Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 591–597 | Cite as

Adaptation of PTB’s analytical modelling for TDCR–Cherenkov activity measurements at LNHB

  • Cheick Thiam
  • Christophe Bobin
  • Jacques Bouchard


Designed for triple to double coincidence ratio measurements based on liquid scintillation, the three-photomultipliers detection system can also be applied for Cherenkov counting using aqueous solutions. For activity determination, a specific modelling of Cherenkov light emission has to be constructed. For that purpose, the analytical modelling first developed at PTB was adapted to account for the physical features of the detection system used at LNHB. The first results are presented in the case of activity measurements of two high-energy β-emitters (90Y and 89Sr). The analytical modelling was also tested for the standardization of 68Ge in a solution of 68Ge/68Ga in equilibrium in the framework of a BIPM international comparison in 2014.


Radionuclide metrology Cherenkov effect TDCR measurements Analytical modelling 


  1. 1.
    Broda R, Cassette P, Kossert K (2007) Radionuclide metrology using liquid scintillation counting. Metrologia 44:S36–S52CrossRefGoogle Scholar
  2. 2.
    Bobin C, Thiam C, Bouchard J, Jaubert F (2010) Application of a stochastic TDCR model based on Geant4 for Cherenkov primary measurements. Appl Radiat Isot 68:2366–2371CrossRefGoogle Scholar
  3. 3.
    Kossert K (2010) Activity standardization by means of a new TDCR-Čerenkov counting technique. Appl Radiat Isot 68:1116–1120CrossRefGoogle Scholar
  4. 4.
    Jelley JV (1955) Čerenkov radiation and its applications. British J Appl Phys 6:227–232CrossRefGoogle Scholar
  5. 5.
    Agostinelli S, Allison J, Amako K et al (2003) Geant4—a simulation toolkit. Nucl Instrum Methods A 506:250–303CrossRefGoogle Scholar
  6. 6.
    Thiam C, Bobin C, Bouchard J (2011) Radiopharmaceutical 11C activity measurements by means of the TDCR-Cerenkov method based on a Geant4 stochastic modeling. In: Proceedings of the liquid scintillation spectrometry conference (LSC 2010), 6–10 Sept, Radiocarbon, pp 341–378Google Scholar
  7. 7.
    Kossert K, Grau Carles A, Nähle OJ (2014) Improved Čerenkov counting technique based on a free parameter model. Appl Radiat Isot 86:7–12CrossRefGoogle Scholar
  8. 8.
    Frank IM, Tamm IG (1937) Coherent visible radiation of fast electrons passing through matters. Dokl Akad Nauk SSSR 14:109–114Google Scholar
  9. 9.
    Grau Carles A, Grau Malonda A (2006) CHEREN2, the Cherenkov counting efficiency by an anisotropy detection model. Comput Phys Commun 174:30–34CrossRefGoogle Scholar
  10. 10.
    Bobin C, Thiam C, Chauvenet B, Bouchard J (2012) On the stochastic dependence between photomultipliers in the TDCR method. Appl Radiat Isot 70:770–780CrossRefGoogle Scholar
  11. 11.
    Lourenço V, Bobin C, Chisté V, Lacour D, Rigoulay F, Tapner M, Thiam C, Ferrreux L (2015) Primary standardization of SIR-Spheres based on the dissolution of the 90Y-labeled resin microspheres. Appl Radiat Isot 97:170–176CrossRefGoogle Scholar
  12. 12.
    Zimmerman BE, Bergeron DE, Fitzgerald R, Cessna JT (2016) Long-term stability of carrier-added 68Ge standardized solutions. Appl Radiat Isot 109:214–216CrossRefGoogle Scholar
  13. 13.
    ESTAR: stopping powers and ranges for electrons (2009).
  14. 14.
    Thormählen I, Straub J, Griguli U (1985) Refractive index of water and its dependence on wavelength, temperature and density. J Phys Chem Ref Data 14:933–945CrossRefGoogle Scholar
  15. 15.
    Araújo HM, Chepel VY, Lopes MI, Van der Marel J, Marques RF, Policarpo AJPL (1998) Study of bialkali photocathodes below room temperature in UV/VUV region. IEEE Trans Nucl Sci 45(3):542–549CrossRefGoogle Scholar
  16. 16.
    Mougeot X (2015) Reliability of usual assumptions in the calculation of β and ν spectra. Phys Rev C 91(055504):1–12Google Scholar
  17. 17.
    Bé M-M, Chisté V, Dulieu C, Browne E, Baglin C, Chechev V, Kuzmenco N, Helmer R, Kondev F, MacMahon D, Lee KB (2006) Table of radionuclides (vol 3—A = 3 to 244). Monographie BIPM-5, Sèvres, ISBN: 92-822-2218-7Google Scholar
  18. 18.
    Birks JB (1952) Theory of the response of organic scintillation crystals to short-range particles. Phys Rev 86:569CrossRefGoogle Scholar
  19. 19.
    Bé M-M, Chisté V, Dulieu C, Browne E, Chechev V, Kuzmenco N, Helmer R, Nichols A, Schönfeld E, Dersch R (2004) Table of radionuclides (vol 1—A = 1 to 150). Monographie BIPM-5, Sèvres, ISBN: 92-822-2206-3Google Scholar
  20. 20.
    Bé M-M, Chisté V, Dulieu C, Mougeot X, Chechev VP, Kondev FG, Nichols AL, Huang X, Wang B (2013) Table of radionuclides (vol 7—A = 14 to 245). Monographie BIPM-5, Sèvres, ISBN: 92-822-2248-5Google Scholar
  21. 21.
    Bouchard J (2000) MTR2: a discriminator and dead-time module used in counting systems. Appl Radiat Isot 52:441–446CrossRefGoogle Scholar
  22. 22.
    Bouchard J (2002) A new set of electronic modules (NIM standard) for a coincidence system using pulse mixing method. Appl Radiat Isot 56:269–273CrossRefGoogle Scholar
  23. 23.
    Baerg AP (1973) The efficiency extrapolation method in coincidence counting. Nucl Instrum Methods 112:143–150CrossRefGoogle Scholar
  24. 24.
    Bobin C, Thiam C, Bouchard J (2017) Standardization of 68Ge/68 Ga using the 4πβ–γ coincidence method based on Cherenkov counting. Appl Radiat Isot. doi: 10.1016/j.apradiso.2017.06.044 Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Cheick Thiam
    • 1
  • Christophe Bobin
    • 1
  • Jacques Bouchard
    • 1
  1. 1.CEA, LIST, Laboratoire National Henri Becquerel, (LNE-LNHB)Gif-Sur-Yvette CedexFrance

Personalised recommendations