Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 573–582 | Cite as

The comparison of scintillation properties of YAP:Ce, YAG:Ce and ZnO:Ga powders as a potential substitution of LSC cocktail

  • Jiri Janda
Article

Abstract

The work investigates the possibility of substitution of a traditional liquid scintillation cocktail by a scintillation powder with grain size up to 30 μm. Based on previous research, YAP:Ce, YAG:Ce and ZnO:Ga powders were selected. The parameters, which often affect the measurement, were tested, such as pH and OH, geometry, efficiency and activity linearity dependency, the amount of scintillator as well as secondary parameters such as afterglow, temperature dependency and repeatable usage. All parameters were simultaneously tested and compared with an AquaLight scintillation cocktail.

Keywords

YAP:Ce YAG:Ce ZnO:Ga Solid scintillator LSC Substitution of liquid scintillation cocktail 

Notes

Acknowledgements

The author of the article would like to express his gratitude to the company Crytur Ltd. for the lending of YAP:Ce scintillation powder. Also I would like to thank Vaclav Cuba and Jan Barta from CTU in Prague for lending YAG:Ce powder and for some technical advices.

References

  1. 1.
    Lecoq P, Gektin A, Korzhik M (2016) Inorganic scintillators for detector systems: physical principles and crystal engineering. Springer, New YorkGoogle Scholar
  2. 2.
    Nikolopoulos D, Valais I, Kandarakis I, Cavouras D, Linardatos D, Sianoudis I, Louizi A, Dimitropoulos N, Vattis D, Episkopakis A, Panayiotakis G, Nomicos C (2006) Evaluation of the GSO: Ce scintillator in the X-ray energy range from 40 to 140 kV for possible applications in medical X-ray imaging. Nucl Instrum Methods Phys Res Sect A 560(2):577–583CrossRefGoogle Scholar
  3. 3.
    Nikl M (2000) Wide band gap scintillation materials: progress in the technology and material understanding. physica status solidi (a) 178(2):595–620CrossRefGoogle Scholar
  4. 4.
    Mares JA, Nikl M, Solovieva N, D’Ambrosio C, De Notaristefani F, Blazek K, Maly P, Nejezchleb K, Fabeni P, Pazzi GP, van Eijk CWE, Dorenbos P, De Haas JTM (2003) Scintillation and spectroscopic properties of Ce 3+-doped YAlO 3 and Lu x (RE) 1 − x AlO 3 (RE = Y 3+ and Gd 3+) scintillators. Nucl Instrum Methods Phys Res Sect A 498(1):312–327CrossRefGoogle Scholar
  5. 5.
    Birowosuto MD, Dorenbos P (2009) Novel γ-and X-ray scintillator research: on the emission wavelength, light yield and time response of Ce3+ doped halide scintillators. physica status solidi (a) 206(1):9–20CrossRefGoogle Scholar
  6. 6.
    Gorin A, Kuroda K, Manuilov I, Riazantsev A, Ishikawa T, Kamitsubo H, Suzuki M, Toyokawa H (2003) Fundamental properties of YAP Imager. Nucl Instrum Methods Phys Res Sect A 510(1):76–82CrossRefGoogle Scholar
  7. 7.
    Moszyński M, Kapusta M, Wolski D, Klamra W, Cederwall B (1998) Properties of the YAP: Ce scintillator. Nucl Instrum Methods Phys Res Sect A 404(1):157–165CrossRefGoogle Scholar
  8. 8.
    Blasse G, Bril A (1967) A new phosphor for flying-spot cathode-ray tubes for color television: yellow-emitting Y3Al5O12–Ce3+. Appl Phys Lett 11(2):53–55CrossRefGoogle Scholar
  9. 9.
    Kalivas N, Valais I, Nikolopoulos D, Konstantinidis A, Gaitanis A, Cavouras D, Nomicos CD, Panayiotakis G, Kandarakis I (2007) Light emission efficiency and imaging properties of YAP: Ce granular phosphor screens. Appl Phys A 89(2):443–449CrossRefGoogle Scholar
  10. 10.
    Zhou S, Fu Z, Zhang J, Zhang S (2006) Spectral properties of rare-earth ions in nanocrystalline YAG: Re (Re = Ce3+, Pr3+, Tb3+). J Lumin 118(2):179–185CrossRefGoogle Scholar
  11. 11.
    Scintillations materials data. Crytur. http://www.crytur.cz/pages/33/scintillation-materials-data. Accessed on 18 March 2016
  12. 12.
    Nikl M, Laguta VV, Vedda A (2008) Complex oxide scintillators: material defects and scintillation performance. Physica status solidi (b) 245(9):1701–1722CrossRefGoogle Scholar
  13. 13.
    Korzhik MV, Misevich OV, Fyodorov AA (1992) YAlO3: Ce scintillators: application for X-and soft γ-ray detection. Nucl Instrum Methods Phys Res Sect B 72(3–4):499–501CrossRefGoogle Scholar
  14. 14.
    Baccaro S, Blaẑek K, De Notaristefani F, Maly P, Mares JA, Pani R, Pellegrini R, Soluri A (1995) Scintillation properties of YAP:Ce. Nucl Instrum Methods Phys Res Sect A 361(1–2):209–215CrossRefGoogle Scholar
  15. 15.
    Čuba V, Indrei J, Múčka V, Nikl M, Beitlerová A, Pospíšil M, Jakubec I (2011) Radiation induced synthesis of powder yttrium aluminium garnet. Radiat Phys Chem 80(9):957–962CrossRefGoogle Scholar
  16. 16.
    Bertetti P, Pabalan R, Pickett D, Turner D (2011) Radionuclide sorption technical assistance activities at the center for nuclear waste regulatory analyses. U.S. Nuclear Regulatory Commission. https://www.nrc.gov/docs/ML1124/ML112490545.pdf. Accessed 1 July 2017
  17. 17.
    Akkaya R (2013) Effects of pH, concentration and temperature on radionuclides sorption onto polyhydroxyethyl methacrylate-expanded perlite composite. J Radioanal Nucl Chem 295(1):351–355CrossRefGoogle Scholar
  18. 18.
    Janda J, Fiserova L, Sas D (2016) The study of substitutability of liquid scintillation cocktail for YAP: Ce powder. J Radioanal Nucl Chem 309(3):1191–1197CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.NBC Defence InstituteUniversity of DefenceVyskovCzech Republic

Personalised recommendations