Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 767–771 | Cite as

Phase stability and lithium loading capacity in a liquid scintillation cocktail



Liquid scintillation cocktails loaded with neutron capture agents such as 6Li are used in both neutron and neutrino detectors. For detectors designed to operate over extended timespans, long-term stability can be a concern. We demonstrate the identification of thermodynamically unstable emulsions as distinct from stable microemulsions, driving phase separation with centrifugation. Phase separation was identified by monitoring the quench indicating parameter, measured using an external Compton source. Samples were also characterized by dynamic light scattering, where in an extreme case, phase separation could be observed in real time. We describe a stable cocktail with 0.01 mass fraction added Li, a relatively high Li concentration.


Phase separation Inverse beta decay Neutrino Neutron Liquid scintillation 6Li 



We thank J. LaRosa (NIST) for assisting with some of the experiments, the Bioprocesses Measurements Group (NIST) for access to dynamic light scattering instrumentation, and the Liquid Scintillation Working Group of the International Conference on Radionuclide Metrology (ICRM) for interesting discussions.


  1. 1.
    Vogel P, Wen LJ, Zhang C (2015) Neutrino oscillation studies with reactors. Nat Commun 6:6935. doi: 10.1038/ncomms7935 CrossRefGoogle Scholar
  2. 2.
    Heeger KM, Tobin MN, Littlejohn BR, Mumm HP (2013) Experimental parameters for a reactor antineutrino experiment at very short baselines. Phys Rev D 87(7):073008CrossRefGoogle Scholar
  3. 3.
    Kopp J, Machado PAN, Maltoni M (2013) Schwetz T (2013) Sterile neutrino oscillations: the global picture. J High Energy Phys 5:50. doi: 10.1007/jhep05(2013)050 CrossRefGoogle Scholar
  4. 4.
    An FP, Balantekin AB, Band HR, Bishai M, Blyth S, Cao D, Cao GF, Cao J, Chan YL, Chang JF (2017) Evolution of the reactor antineutrino flux and spectrum at Daya Bay. Preprint. arXiv:170401082
  5. 5.
    Ashenfelter J, Balantekin AB, Band HR, Barclay G, Bass CD, Berish D, Bignell L, Bowden NS, Bowes A, Brodsky JP, Bryan CD, Cherwinka JJ, Chu R, Classen T, Commeford K, Conant AJ, Davee D, Dean D, Deichert G, Diwan MV, Dolinski MJ, Dolph J, DuVernois M, Erickson AS, Febbraro MT, Gaison JK, Galindo-Uribarri A, Gilje K, Glenn A, Goddard BW, Green M, Hackett BT, Han K, Hans S, Heeger KM, Heffron B, Insler J, Jaffe DE, Jones D, Langford TJ, Littlejohn BR, Martinez-Caicedo DA, Matta JT, McKeown RD, Mendenhall MP, Mueller PE, Mumm HP, Napolitano J, Neilson R, Nikkel JA, Norcini D, Pushin D, Qian X, Romero E, Rosero R, Seilhan BS, Sharma R, Sheets S, Surukuchi PT, Trinh C, Varner RL, Viren B, Wang W, White B, White C, Wilhelmi J, Williams C, Wise T, Yao H, Yeh M, Yen Y-R, Zangakis GZ, Zhang C, Zhang X, The PROSPECT Collaboration (2016) The PROSPECT physics program. J Phys G 43(11):113001CrossRefGoogle Scholar
  6. 6.
    Lhuillier D (2015) Future short-baseline sterile neutrino searches with reactors. AIP Conf Proc 1666(1):180003. doi: 10.1063/1.4915600 CrossRefGoogle Scholar
  7. 7.
    Abreu Y, Amhis Y, Arnold L, Ban G, Beaumont W, Bongrand M, Boursette D, Buhour JM, Castle BC, Clark K, Coupé B, Cucoanes AS, Cussans D, Roeck AD, Hondt JD, Durand D, Fallot M, Fresneau S, Ghys L, Giot L, Guillon B, Guilloux G, Ihantola S, Janssen X, Kalcheva S, Kalousis LN, Koonen E, Labare M, Lehaut G, Mermans J, Michiels I, Moortgat C, Newbold D, Park J, Petridis K, Piñera I, Pommery G, Popescu L, Pronost G, Rademacker J, Reynolds A, Ryckbosch D, Ryder N, Saunders D, Yu AS, Schune MH, Scovell PR, Simard L, Vacheret A, Dyck SV, Mulders PV, Nv Remortel, Vercaemer S, Waldron A, Weber A, Yermia F (2017) A novel segmented-scintillator antineutrino detector. J Instrum 12(04):P04024CrossRefGoogle Scholar
  8. 8.
    Bass CD, Beise EJ, Breuer H, Heimbach CR, Langford TJ, Nico JS (2013) Characterization of a 6Li-loaded liquid organic scintillator for fast neutron spectrometry and thermal neutron detection. Appl Radiat Isot 77:130–138CrossRefGoogle Scholar
  9. 9.
    Fisher BM, Abdurashitov JN, Coakley KJ, Gavrin VN, Gilliam DM, Nico JS, Shikhin AA, Thompson AK, Vecchia DF, Yants VE (2011) Fast neutron detection with 6Li-loaded liquid scintillator. Nucl Instrum Methods Phys Res, Sect A 646(1):126–134. doi: 10.1016/j.nima.2011.04.019 CrossRefGoogle Scholar
  10. 10.
    Benziger JB, Calaprice FP (2016) Large-scale liquid scintillation detectors for solar neutrinos. Eur Phys J A 52(4):81. doi: 10.1140/epja/i2016-16081-6 CrossRefGoogle Scholar
  11. 11.
    Fanun M (2008) Microemulsions: properties and applications, vol 144. CRC Press, Boca RatonCrossRefGoogle Scholar
  12. 12.
    Holden NE (2010) The impact of depleted 6Li on the standard atomic weight of lithium. Chem Int 32(1):12–14Google Scholar
  13. 13.
    L’Annunziata MF, Kessler MJ (2012) Liquid scintillation analysis: principles and practice. In: L’Annunziata MF (ed) Handbook of radioactivity analysis, vol 3. Elsevier, Amsterdam, pp 424–573Google Scholar
  14. 14.
    Bergeron DE (2012) Determination of micelle size in some commercial liquid scintillation cocktails. Appl Radiat Isot 70(9):2164–2169. doi: 10.1016/j.apradiso.2012.02.089 CrossRefGoogle Scholar
  15. 15.
    Aleksan R, Bouchez J, Cribier M, Kajfasz E, Pichard B, Pierre F, Poinsignon J, Spiro M, Thomas JF (1989) Measurement of fast neutrons in the Gran Sasso laboratory using a 6Li doped liquid scintillator. Nucl Instrum Methods Phys Res, Sect A 274(1):203–206. doi: 10.1016/0168-9002(89)90380-X CrossRefGoogle Scholar
  16. 16.
    Tanaka HKM, Watanabe H (2014) 6Li-loaded directionally sensitive anti-neutrino detector for possible geo-neutrinographic imaging applications. Sci Rep 4:4708. doi: 10.1038/srep04708 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Physical Measurement LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations