Journal of Radioanalytical and Nuclear Chemistry

, Volume 314, Issue 2, pp 545–553 | Cite as

Primary activity standardization of 134Cs

  • Karsten Kossert
  • Justyna Marganiec-Gałązka
  • Ole J. Nähle


Cesium-134 has been measured by means of a new coincidence counting system which is equipped with a liquid scintillation detector to count β particles and a NaI crystal to detect γ-rays which are emitted simultaneously. In order to validate this new technique, additional measurements were carried out with an established 4πβγ-coincidence counting system with a proportional counter in the β channel. The coincidence counting experiments were complemented with measurements in further liquid scintillation counters with two and three photomultiplier tubes. The counting efficiencies for these systems were determined using CIEMAT/NIST efficiency tracing and the triple-to-double coincidence ratio (TDCR) method, respectively.


134Cs Activity standardization Coincidence counting Triple-to-double coincidence ratio method CIEMAT/NIST efficiency tracing 



We wish to thank S. Hennig for sample preparation.


  1. 1.
    Schönfeld E, Janssen H, Klein R, Hardy JC, Iacob V, Sanchez-Vega M, Griffin HC, Ludington MA (2002) Production of Co-60 sources for high-accuracy efficiency calibrations of gamma-ray spectrometers. Appl Radiat Isot 56:215–221CrossRefGoogle Scholar
  2. 2.
    Nähle O, Kossert K, Cassette P (2010) Activity standardization of 3H with the new TDCR system at PTB. Appl Radiat Isot 68:1534–1536CrossRefGoogle Scholar
  3. 3.
    Grau Malonda A (1999) Free parameter models in liquid scintillation counting. Colección Documentos CIEMAT, CIEMAT. ISBN 84-7834-350-4Google Scholar
  4. 4.
    Broda R, Cassette P, Kossert K (2007) Radionuclide metrology using liquid scintillation counting. Metrologia 44:S36–S52CrossRefGoogle Scholar
  5. 5.
    Bé MM, Chisté V, Dulieu C, Mougeot X, Chechev VP, Kondev FG, Nichols AL, Huang X, Wang B (2013) Table of radionuclides (Vol. 7A = 14 to 245). Monographie BIPM-5 Vol. 7, Bureau International des Poids et Mesures, Sèvres, ISBN-13 978-92-822-2248-5Google Scholar
  6. 6.
    Nähle O, Zhao Q, Wanke C, Weierganz M, Kossert K (2014) A portable TDCR system. Appl Radiat Isot 87:249–253CrossRefGoogle Scholar
  7. 7.
    Schönfeld E, Janssen H (1994) Precise measurement of dead time. Nucl Instrum Methods A339:137–143CrossRefGoogle Scholar
  8. 8.
    Smith D (1978) Improved correction formulae for coincidence counting. Nucl Instrum Methods 152:505–519CrossRefGoogle Scholar
  9. 9.
    ICRU Report 52 (1994) Particle counting in radioactivity measurements. Bethesda, Md., ISBN 0-913394-51-3Google Scholar
  10. 10.
    Bouchard J, Cassette P (2000) MAC3: an electronic module for the processing of pulses de-livered by a three photomultiplier liquid scintillation counting system. Appl Radiat Isot 52:669–672CrossRefGoogle Scholar
  11. 11.
    Rytz A (1982) Activity measurement of a solution of 134Cs: report on an international comparison. Nucl Instrum Methods 192:427–431CrossRefGoogle Scholar
  12. 12.
    Yunoki A, Kawada Y, Hino Y (2016) Improvements of the standardization of 134Cs by the critical window setting for 605 keV photopeak. Appl Radiat Isot 109:374–377CrossRefGoogle Scholar
  13. 13.
    García-Toraño E, Rodríguez Barquero L, Roteta M (2002) Standardization of 134Cs by three methods. Appl Radiat Isot 56:211–214CrossRefGoogle Scholar
  14. 14.
    Kibédi T, Burrows TW, Trzhaskovskaya MB, Davidson PM, Nestor CW Jr. (2008) Evaluation of theoretical conversion coefficients using BrIcc. Nucl Instrum Methods.589, 202–229. And: Accessed June 2015
  15. 15.
    Kossert K, Schrader H (2004) Activity standardization by liquid scintillation counting and half-life measurements of 90Y. Appl Radiat Isot 60:741–749CrossRefGoogle Scholar
  16. 16.
    Nähle O, Kossert K, Klein R (2008) Activity standardization of 22Na. Appl Radiat Isot 66:865–871CrossRefGoogle Scholar
  17. 17.
    Verdecia OP, Kossert K (2009) Activity standardization of 131I at CENTIS-DMR and PTB within the scope of a bilateral comparison. Appl Radiat Isot 67:1099–1103CrossRefGoogle Scholar
  18. 18.
    Carles AG (2007) MICELLE, the micelle size effect on the LS counting efficiency. Comput Phys Commun 176:305–317CrossRefGoogle Scholar
  19. 19.
    Kossert K, Nähle OJ, Ott O, Dersch R (2012) Activity determination and nuclear decay data of 177Lu. Appl Radiat Isot 70:2215–2221CrossRefGoogle Scholar
  20. 20.
    Kossert K, Nähle OJ (2014) Activity determination of 59Fe. Appl Radiat Isot 93:33–37CrossRefGoogle Scholar
  21. 21.
    Kossert K, Cassette P, Carles AG, Jörg G, Gostomski CL, Nähle O, Wolf C (2014) Extension of the TDCR model to compute counting efficiencies for radionuclides with complex decay schemes. Appl Radiat Isot 87:242–248CrossRefGoogle Scholar
  22. 22.
    Kossert K, Altzitzoglou T, Auerbach P, Bé MM, Bobin Ch, Cassette P, García-Toraño E, Grigaut-Desbrosses H, Isnard H, Lourenço V, Nähle O, Paepen J, Peyrés V, Pommé S, Rozkov A, Sanchez-Cabezudo AI, Sochorová J, Thiam C, Van Ammel R (2014) Results of the EURAMET.RI(II)-K2.Ho-166 m activity comparison. Metrologia 51:06022CrossRefGoogle Scholar
  23. 23.
    Kossert K, Grau Carles A (2010) Improved method for the calculation of the counting efficiency of electron-capture nuclides in liquid scintillation samples. Appl Radiat Isot 68:1482–1488CrossRefGoogle Scholar
  24. 24.
    Kossert K, Broda R, Cassette P, Ratel G, Zimmerman B (2015) Uncertainty determination for activity measurements by means of the TDCR method and the CIEMAT/NIST efficiency tracing technique. Metrologia 52:S172–S190CrossRefGoogle Scholar
  25. 25.
    Kossert K, Mougeot X (2015) The importance of the beta spectrum calculation for accurate activity determination of 63Ni by means of liquid scintillation counting. Appl Radiat Isot 101:40–43CrossRefGoogle Scholar
  26. 26.
    Nähle O, Kossert K (2011) Comparison of the TDCR method and the CIEMAT/NIST method for the activity determination of beta emitting nuclides. LSC2010, Advances in LS spectrometry: proceedings of the 2010 international conference on LS spectrometry, Paris 6–10 September 2010, Cassette P (ed), Radiocarbon, The University of Arizona, Tucson. ISBN 978-0-9638314-7-7, 313-320Google Scholar
  27. 27.
    Pommé S (2016) When the model doesn’t cover reality: examples from radionuclide metrology. Metrologia 53:S55–S64CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Physikalisch-Technische Bundesanstalt (PTB)BraunschweigGermany

Personalised recommendations