Skip to main content
Log in

Design and synthesis of a novel soft-hard donor ligand for solvent extraction of Th(IV) from nitric acid media

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A novel hard-soft donor ligand 2,2′,2″,2‴-(((ethane-1,2-diylbis(azanediyl))bis(2-oxoethane-2,1-diyl))bis(azanetriyl))tetrakis(N,N-dibutylacetamide) (L), containing eight nitrogen atoms and six oxygen atoms, was rationally designed and synthesized for the extraction of Th(IV) from nitric acid solution. Solvent extraction studies including the effects of extraction time, acidity, nitrate ions, temperature, the concentration of ligand L, mixed ions and stripping agents on extraction behavior of Th(IV) were carried out. The results show that L exhibits higher extraction efficiency for Th(IV) than those of U(VI) over a wide range of HNO3 concentrations. Slope analysis indicates that Th(IV) is extracted as the extracted complex with a thorium/L ratio of 1:1. In addition, Th(IV) can be selectively extracted from mixed ions and easily stripped by using 2.0 mol/L Na2CO3 solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Locatelli G, Mancini M, Todeschini N (2013) Generation IV nuclear reactors: current status and future prospects. Energy Policy 61:1503–1520

    Article  Google Scholar 

  2. Mathieu L, Heuer D, Brissot R et al (2006) The thorium molten salt reactor: moving on from the MSBR. Prog Nucl Energy 48:664–679

    Article  CAS  Google Scholar 

  3. Abram T, Ion S (2008) Generation-IV nuclear power: a review of the state of the science. Energy Policy 36:4323–4330

    Article  Google Scholar 

  4. Chandra S, Agarwal H, Singh CK (2007) A highly selective and sensitive thorium (IV) PVC membrane electrode based on a dithio-tetraaza macrocyclic compound. Anal Sci 23:469–473

    Article  CAS  Google Scholar 

  5. Awwal MA, Carswell DJ (1966) Aqueous reposessing of reactor fuel. Chem Rev 66:279–295

    Article  Google Scholar 

  6. Lung M, Gremm O (1998) Perspective of the thorium fuel cycle. Nucl Eng Des 180:133–146

    Article  CAS  Google Scholar 

  7. Galperin A, Reichert P, Radkowsky A (1997) Thorium fuel for light water reactors-reducing proliferation potential of nuclear power fuel cycle. Sci Glob Secur 6:265–290

    Article  Google Scholar 

  8. Herring JS, MacDonald PE, Weaver KD et al (2001) Low cost, proliferation resistant, uranium-thorium dioxide fuels for light water reactors. Nucl Eng Des 203:65–85

    Article  CAS  Google Scholar 

  9. Jiang MH, Xu HJ, Dai ZM (2012) Advanced fission energy program-TMSR nuclear energy system. Bull Chin Acad Sci. 27:366–374

    Google Scholar 

  10. Kumari N, Pathak PN, Prabhu DR et al (2012) Development of solvent extraction scheme for reprocessing of advanced heavy water reactor spent fuel using N,N-dihexyl octanamide as extractant. Desalin Water Treat. 38:159–165

    Article  CAS  Google Scholar 

  11. Verma PK, Kumari N, Prabhu DR et al (2013) Optimization studies for the recovery of thorium from advanced heavy water reactor high level waste (AHWR-HLW) solutions using green solvents. Sep Sci Technol 48:626–633

    Article  CAS  Google Scholar 

  12. Pathak PN (2014) N, N-Dialkyl amides as extractants for spent fuel reprocessing: an overview. J Radioanal Nucl Chem 300:7–15

    Article  CAS  Google Scholar 

  13. Sinha RK, Kakodkar A (2006) Design and development of the AHWR-the Indian thorium fuelled innovative nuclear reactor. Nucl Eng Des 236:683–700

    Article  CAS  Google Scholar 

  14. Zuo Y, Chen J, Li D (2008) Reversed micellar solubilization extraction and separation of thorium(IV) from rare earth(III) by primary amine N1923 in ionic liquid. Sep Purif Technol 63:684–690

    Article  CAS  Google Scholar 

  15. Tong H, Wang Y, Liao W et al (2013) Synergistic extraction of Ce(IV) and Th(IV) with mixtures of Cyanex 923 and organophosphorus acids in sulfuric acid media. Sep Purif Technol 118:487–491

    Article  CAS  Google Scholar 

  16. Dey PK, Bansal NK (2006) Spent fuel reprocessing: a vital link in Indian nuclear power program. Nucl Eng Des 236:723–729

    Article  CAS  Google Scholar 

  17. Pathak PN, Prabhu DR, Ruikar PB et al (2002) Evaluation of di(2-ethylhexyl)isobutyramide (D2EHIBA) as a process extractant for the recovery of 233U from irradiated Th. Solvent Extr Ion Exch 20:293–311

    Article  CAS  Google Scholar 

  18. Suresh A, Srinivasan TG, Rao PRV (1994) Extraction of U(VI), Pu(IV) and Th(IV) by some trialkyl phosphates. Solvent Extr Ion Exch 12:727–744

    Article  CAS  Google Scholar 

  19. Srinivasan TG, Vijayasaradhi S, Dhamodaran R et al (1998) Third phase formation in extraction of thorium nitrate by mixtures of trialkyl phosphates. Solvent Extr Ion Exch 16:1001–1011

    Article  CAS  Google Scholar 

  20. Brahmmananda Rao CVS, Srinivasan TG, Vasudeva Rao PR (2012) Studies on the extraction of actinides by substituted butyl phosphonates. Solvent Extr Ion Exch 30:262–277

    Article  CAS  Google Scholar 

  21. Lash RP, Hill CJ (1979) Ion chromatographic determination of dibutylphosphoric acid in nuclear fuel reprocessing streams. J Liq Chromatogr 2:417–427

    Article  CAS  Google Scholar 

  22. Mincher BJ, Modolo G, Mezyk SP (2009) Review article: the effects of radiation chemistry on solvent extraction 3: a review of actinide and lanthanide extraction. Solvent Extr Ion Exch 27:579–606

    Article  CAS  Google Scholar 

  23. Suresh A, Srinivasan TG, Vasudeva Rao PR (2009) The effect of the structure of trialkyl phosphates on their physicochemical properties and extraction behavior. Solvent Extr Ion Exch 27:258–294

    Article  CAS  Google Scholar 

  24. Gorden AE, DeVore MA, Maynard BA (2013) Coordination chemistry with f-element complexes for an improved understanding of factors that contribute to extraction selectivity. Inorg Chem 52:3445–3458

    Article  CAS  Google Scholar 

  25. Sadhu B, Sundararajan M, Bandyopadhyay T (2016) Efficient separation of europium over americium using cucurbit-[5]-uril supramolecule: a relativistic DFT based investigation. Inorg Chem 55:598–609

    Article  CAS  Google Scholar 

  26. Sasaki Y, Tsubata Y, Kitatsuji Y et al (2012) Multiplier effect on separation of Am and Cm with hydrophilic and lipophilic diamides. Procedia Chem. 7:380–386

    Article  CAS  Google Scholar 

  27. Iqbal M, Huskens J, Sypula M et al (2011) Synthesis and evaluation of novel water-soluble ligands for the complexation of metals during the partitioning of actinides. New J Chem 35:2591–2600

    Article  CAS  Google Scholar 

  28. Iqbal M, Huskens J, Verboom W et al (2010) Synthesis and Am/Eu extraction of novel TODGA derivatives. Supramol Chem 22:827–837

    Article  CAS  Google Scholar 

  29. Pathak PN, Veeraraghavan R, Ruikar PB et al (1999) Solvent extraction studies on Th(IV), Pa(V) and U(VI) from nitric acid medium using di-2-ethyl hexyl isobutyramide (D2EHIBA). Radiochim Acta 86:129–134

    CAS  Google Scholar 

  30. Pathak PN, Prabhu DR, Manchanda VK (2000) Distribution behaviour of U(VI), Th(IV) and Pa(V) from nitric acid medium using linear and branched chain extractants. Solvent Extr Ion Exch 18:821–840

    Article  CAS  Google Scholar 

  31. Sasaki Y, Sugo Y, Suzuki S et al (2001) The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3-n-dodecane system. Solvent Extr Ion Exch 19:91–103

    Article  CAS  Google Scholar 

  32. Xiao CL, Wang CZ, Yuan LY et al (2014) Excellent selectivity for actinides with a tetradentate 2,9-diamide-1,10-phenanthroline ligand in highly acidic solution: a hard-soft donor combined strategy. Inorg Chem 53:1712–1720

    Article  CAS  Google Scholar 

  33. Huang H, Ding SD, Su DP et al (2014) High selective extraction for thorium(IV) with NTAamide in nitric acid solution: synthesis, solvent extraction and structure studies. Sep Purif Technol 138:65–70

    Article  CAS  Google Scholar 

  34. Dar’in D, Bakulina O, Chizhova M et al (2015) New heterocyclic product space for the Castagnoli-Cushman three-component reaction. Org Lett 17:3930–3933

    Article  Google Scholar 

  35. Cookson J, Vickers MS, Paul RL et al (2008) Amide functionalised dithiocarbamate ruthenium(II) bis-bipyridyl receptors: a new class of redox-responsive anion sensor. Inorg Chim Acta 361:1689–1698

    Article  CAS  Google Scholar 

  36. Singhamahapatra A, Sahoo L, Loganathan D (2013) Clickable glycopeptoids for synthesis of glycopeptide mimic. J Org Chem 78:10329–10336

    Article  CAS  Google Scholar 

  37. Hoque J, Konai MM, Gonuguntla S et al (2015) Membrane active small molecules show selective broad spectrum antibacterial activity with no detectable resistance and eradicate biofilms. J Med Chem 58:5486–5500

    Article  CAS  Google Scholar 

  38. Amaral JCBS, Morais CA (2010) Thorium and uranium extraction from rare earth elements in monazite sulfuric acid liquor through solvent extraction. Miner Eng 23:498–503

    Article  CAS  Google Scholar 

  39. Hu P, Qian L, He Y et al (2012) Solvent extraction of uranium(VI) and thorium(IV) by N, N′-di-p-tolylpyridine-2,6-dicarboxamide from nitric acid solution. J Radioanal Nucl Chem 297:133–137

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 11475120 and 11575122) and the National Fund for Fostering Talents of Basic Science of China (J1210004). Funding from the Doctor Research Foundation of Southwest University of Science and Technology (Grant 16zx7156) is gratefully acknowledged. The authors also thank the support from Comprehensive training platform of specialized laboratory, College of Chemistry, Sichuan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Pan, Yongdong Jin or Chuanqin Xia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32390 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Ding, J., Xiao, F. et al. Design and synthesis of a novel soft-hard donor ligand for solvent extraction of Th(IV) from nitric acid media. J Radioanal Nucl Chem 312, 655–662 (2017). https://doi.org/10.1007/s10967-017-5263-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5263-5

Keywords

Navigation