Journal of Radioanalytical and Nuclear Chemistry

, Volume 311, Issue 1, pp 789–800 | Cite as

Dissolution and characterisation studies on U–Zr and U–Pu–Zr alloys in nitric acid medium

  • B. Sreenivasulu
  • A. Suresh
  • N. Sivaraman
  • M. Joseph


Dissolution of metallic alloys, U–Zr and U–Pu–Zr has been investigated in HNO3 media. An electro oxidative dissolution technique was also examined. Explosive nature of metallic alloys during dissolution in nitric acid has been investigated. A method has been developed for the determination of zirconium in the presence of uranium and plutonium using a spectrophotometric technique. The influence of HNO3, uranium and plutonium during the estimation of Zr has been studied. Plutonium interferes in the estimation of Zr and it can be avoided by employing ascorbic acid. The method was employed for the estimation of Zr in samples generated during dissolution of Zr containing alloy fuels.


U–Zr U–Pu–Zr Dissolution Explosion Spectrophotometry 


  1. 1.
    Kelman L, Savage H, Walter C (1967) Status of metallic plutonium fast power-breeder fuels. In: Kay, AE Waldron, MB (eds.) of Plutonium 1965, pp 458–484 . Proceedings of the Third International Conference on Plutonium, London, November 22–26, 1965. New York, Barnes and Noble, Inc., 1. Argonne National Lab., III, LemontGoogle Scholar
  2. 2.
    Beck W, Brown F, Koprowski B (1967) Performance of advanced U–Pu–Zr alloy fuel elements under fast-reactor conditions. Argonne National Lab., III, LemontGoogle Scholar
  3. 3.
    Crawford DC, Porter DL, Hayes SL (2007) Fuels for sodium-cooled fast reactors: US perspective. J Nucl Mater 371:202–231CrossRefGoogle Scholar
  4. 4.
    Larsen RP (1959) Dissolution of uranium metal and its alloys. Anal Chem 31:545–549CrossRefGoogle Scholar
  5. 5.
    Laue C, Gates-Anderson D, Fitch T (2004) Dissolution of metallic uranium and its alloys. J Radioanal Nucl Chem 261:709–717CrossRefGoogle Scholar
  6. 6.
    Robert R, Choppin G, Wild J (1986) The radiochemistry of uranium. Neptunium and plutonium—an updating, NAS-NS 3063Google Scholar
  7. 7.
    Rodrigues L, Falleiros N, De Forbicini OC (2002) Kinetics of the electrodissolution of metallic uranium. J Radioanal Nucl Chem 253:511–515CrossRefGoogle Scholar
  8. 8.
    Nikitin S, Maslennikov A (2014) Electrochemical properties and dissolution of U-5 wt% Zr Alloy in HNO3 solutions. Radiochemistry 56:241–246CrossRefGoogle Scholar
  9. 9.
    Bray L, Ryan J, Wheelwright E (1985) Development of the CEPOD process for dissolving plutonium oxide and leaching plutonium from scrap or wastes. Pacific Northwest Labs, RichlandGoogle Scholar
  10. 10.
    Harmon H (1975) Evaluation of fluoride, cerium(IV) and cerium(IV) fluoride mixtures as dissolution promoters for PuO2 scrap recovery processes. US-ERDA Report. DP-1382. EI du Pont de Nemours & Co., Savannah River Laboratory, Aiken, South CarolinaGoogle Scholar
  11. 11.
    Palamalai A, Rajan S, Chinnusamy A (1991) Development of an electro-oxidative dissolution technique for fast reactor carbide fuels. Radiochim Acta 55:29–36CrossRefGoogle Scholar
  12. 12.
    Christian JD Aqueous reprocessing of U–Pu–Zr metal fuels–dissolution considerations. In, 3122 Homestead Lane, Idaho FallsGoogle Scholar
  13. 13.
    Larsen RP, Shor RS, Feder HM (1954) A study of the explosive properties of uranium–zirconium alloys. Argonne National Lab, LemontCrossRefGoogle Scholar
  14. 14.
    Martin F, Field B (1958) The reactions of zirconium and zirconium based alloys with nitric and nitric-hydrofluoric acids. Part I. hazardous aspects. Part II. dissolution rates. United Kingdom Atomic Energy Authority. Research Group. Atomic Energy Research Establishment, Harwell, Berks, EnglandGoogle Scholar
  15. 15.
    Roth H (1952) Explosions occurring during chemical etching Or pickling of uranium–zirconium alloys. Massachusetts Inst. of Tech., Cambridge. Metallurgical ProjectGoogle Scholar
  16. 16.
    Hurford W (1953) Explosions involving pickling of zirconium and uranium Alloys. Westinghouse Electric Corp. Atomic Power Div, PittsburghCrossRefGoogle Scholar
  17. 17.
    Gens T (1961) Zircex and modified zirflex processes for dissolution of 8% U-91% Zr-1% H TRIGA reactor fuel. Oak Ridge National Lab, Oak RidgeGoogle Scholar
  18. 18.
    Gens T (1963) Continuous dissolution of zirconium reactor fuels in titanium equipment: laboratory demonstration. Oak Ridge National Lab, Oak RidgeCrossRefGoogle Scholar
  19. 19.
    Flagg JF, Liebhafsky HA, Winslow EH (1949) A spectrophotometric study of three zirconium lakes. J Am Chem Soc 71:3630–3632CrossRefGoogle Scholar
  20. 20.
    Oesper RE, Klingenberg JJ (1949) Use of glycolic acid derivatives in determination of zirconium. Anal Chem 21:1509–1511CrossRefGoogle Scholar
  21. 21.
    Larsen R, Ross L, Kesser G (1960) Spectrophotometric determination of zirconium in uranium alloys of the fission elements. Talanta 4:108–114CrossRefGoogle Scholar
  22. 22.
    Rafiq M, Rules CL, Elving PJ (1963) Determination of small amounts of zirconium—I: gravimetric procedures using mandelic acid and its derivatives. Talanta 10:696–701CrossRefGoogle Scholar
  23. 23.
    Evans H, Hrobar A, Patterson J (1960) Determination of zirconium in uranium fissium alloys. Anal Chem 32:481–483CrossRefGoogle Scholar
  24. 24.
    Buchanan R, Hughes J, Bloomquist C (1960) The colorimetric determination of zirconium in plutonium–uranium–‘fissium’alloys. Talanta 6:100–104Google Scholar
  25. 25.
    Cheng K (1959) Analytical applications of xylenol orange—I: determination of traces of zirconium. Talanta 2:61–66CrossRefGoogle Scholar
  26. 26.
    Kaity S, Banerjee J, Nair M (2012) Microstructural and thermophysical properties of U–6wt.% Zr alloy for fast reactor application. J Nucl Mater 427:1–11CrossRefGoogle Scholar
  27. 27.
    Seidel BR, Tracy DB, Griffiths V (1991) Apparatus for injection casting metallic nuclear energy fuel rods. In: Google PatentsGoogle Scholar
  28. 28.
    Gopinath N (2008) Chemical characterization of nuclear fuels. In: Tomar BS (ed) IANCAS, Mumbai, p 156–168Google Scholar
  29. 29.
    Agarwal RP, Moreno EC (1971) Stability constants of aluminium fluoride complexes. Talanta 18:873–880CrossRefGoogle Scholar
  30. 30.
    Chaudhuri N, Sawant R, Sood D (1999) A critical review on the stability constants of the fluoride complexes of actinides in aqueous solution and their correlation with fundamental properties of the ions. J Radioanal Nucl Chem 240:993–1011CrossRefGoogle Scholar
  31. 31.
    Mathur J, Murali M, Krishna MB (1996) Recovery of neptunium from highly radioactive waste solutions of PUREX origin using CMPO. J Radioanal Nucl Chem 213:419–429CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • B. Sreenivasulu
    • 1
  • A. Suresh
    • 1
  • N. Sivaraman
    • 1
  • M. Joseph
    • 1
  1. 1.Chemistry GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations