Journal of Radioanalytical and Nuclear Chemistry

, Volume 311, Issue 1, pp 809–814 | Cite as

Electrochemical properties of noble metal anodes for electrolytic reduction of uranium oxide

  • Sung-Wook Kim
  • Sang-Kwon Lee
  • Hyun Woo Kang
  • Eun-Young Choi
  • Wooshin Park
  • Sun-Seok Hong
  • Seung-Chul Oh
  • Jin-Mok Hur


Noble metals (Rh, Pd, Ir, and Au) were investigated as O2-evolving anodes for electrolytic reduction of UO2 in LiCl–Li2O molten salt to replace Pt anodes, which are gradually consumed owing to Li2PtO3 layer formation. Anodic behaviors of these metals were examined by cyclic voltammetry. Au only showed O2 evolution in a moderate potential range without side reactions, suggesting better electrochemical stability relative to Pt anodes. With Au anodes, UO2 was electrochemically reduced to metallic U. No oxide layer was observed on the surface after the reduction. However, local dissolution remains a potential issue from a stability viewpoint.


Pyroprocessing Electrochemistry Electrolytic reduction Anode Noble metal Gold 



This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (2012M2A8A5025697).


  1. 1.
    Chen GZ, Fray DJ, Farthing TW (2000) Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 407:361–364CrossRefGoogle Scholar
  2. 2.
    Allanore A, Yin L, Sadoway DR (2013) A new anode material for oxygen evolution in molten oxide electrolysis. Nature 497:353CrossRefGoogle Scholar
  3. 3.
    Gordo E, Chen GZ, Fray DJ (2004) Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts. Electrochim Acta 49:2195–2208CrossRefGoogle Scholar
  4. 4.
    Lee H, Park G-I, Kang K-H, Hur J-M, Kim J-G, Ahn D-H, Cho Y-Z, Kim E-H (2011) Pyroprocessing technology development at KAERI. Nucl Eng Technol 43:317–328CrossRefGoogle Scholar
  5. 5.
    Ohta H, Inoue T, Sakamura Y, Kinoshita K (2005) Pyroprocessing of light water reactor spent fuels based on an electrochemical reduction technology. Nucl Technol 150:153–161Google Scholar
  6. 6.
    Inoue T, Koch L (2008) Development of pyroprocessing and its future direction. Nucl Eng Technol 40:183–190CrossRefGoogle Scholar
  7. 7.
    Hur J-M, Jeong SM, Lee H (2010) Underpotential deposition of Li in a molten LiCl–Li2O electrolyte for the electrochemical reduction of U from uranium oxides. Electrochem Commun 12:706–709CrossRefGoogle Scholar
  8. 8.
    Jeong SM, Shin H-S, Cho S-H, Hur J-M, Lee HS (2009) Electrochemical behavior of a platinum anode for reduction of uranium oxide in a LiCl molten salt. Electrochim Acta 54:6335–6340CrossRefGoogle Scholar
  9. 9.
    Sakamura Y, Omori T, Inoue T (2008) Application of electrochemical reduction to produce metal fuel material from actinide oxides. Nucl Technol 162:169CrossRefGoogle Scholar
  10. 10.
    Sakamura Y, Omori T (2010) Electrolytic reduction and electrorefining of uranium to develop pyrochemical reprocessing of oxide fuels. Nucl Technol 171:266Google Scholar
  11. 11.
    Herrmann SD, Li SX (2010) Separation and recovery of uranium metal from spent light water reactor fuel via electrolytic reduction and electrorefining. Nucl Technol 171:247CrossRefGoogle Scholar
  12. 12.
    Kim S-W, Choi E-Y, Park W, Im HS, Hur J-M (2015) A conductive oxide as an O2 evolution anode for the electrolytic reduction of metal oxides. Electrochem Commun 55:14CrossRefGoogle Scholar
  13. 13.
    Kim S-W, Kang HW, Jeon MK, Lee S-K, Choi E-Y, Park W, Hong S-S, Oh S-C, Hur J-M (2016) Chemical stability of conductive ceramic anodes in LiCl–Li2O molten salt for electrolytic reduction in pyroprocessing. Nucl Eng Technol 48:997CrossRefGoogle Scholar
  14. 14.
    Sakamura Y, Iizuka M (2016) Applicability of nickel ferrite anode to electrolytic reduction of metal oxides in LiCl–Li2O melt at 923 K. Electrochim Acta 189:74CrossRefGoogle Scholar
  15. 15.
    Kim S-W, Choi E-Y, Park W, Im HS, Hur J-M (2015) TiN anode for electrolytic reduction of UO2 in pyroprocessing. J Nucl Fuel Cycle Waste Technol 13:229–233CrossRefGoogle Scholar
  16. 16.
    Hur J-M, Cha J-S, Choi E-Y (2014) Can carbon be an anode for electrochemical reduction in a LiCl–Li2O molten salt? ECS Electrochem Lett 3:E5CrossRefGoogle Scholar
  17. 17.
    Kim S-W, Jeon MK, Kang HW, Lee S-K, Choi E-Y, Park W, Hong S-S, Oh S-C, Hur J-M (2016) Carbon anode with repeatable use of LiCl molten salt for electrolytic reduction in pyroprocessing. J Radional Nucl Chem 310:463CrossRefGoogle Scholar
  18. 18.
    Merwin A, Chidambaran D (2015) Alternate anodes for the electrolytic reduction of UO2. Metall Mater Trans A 46:536CrossRefGoogle Scholar
  19. 19.
    Kim S-W, Park W, Im HS, Hur J-M, Hong S-S, Oh S-C, Choi E-Y (2015) Electrochemical behavior of liquid Sb anode system for electrolytic reduction of UO2. J Radioanal Nucl Chem 303:1041–1046CrossRefGoogle Scholar
  20. 20.
    Cho S-H, Hur J-M, Seo C-S, Yoon J-S, Park S-W (2009) Hot corrosion behavior of Ni-base alloys in a molten salt under an oxidizing atmosphere. J Alloys Compd 468:263CrossRefGoogle Scholar
  21. 21.
    Gibilaro M, Cassayre L, Lemoine O, Massot L, Dugne O, Malmbeck R, Chamelot P (2011) Direct electrochemical reduction of solid uranium oxide in molten fluoride salts. J Nucl Mater 414:169CrossRefGoogle Scholar
  22. 22.
    Pelton AD (1986) The Au–Li (gold–lithium) system. Bull Alloy Phase Diagr 7:228CrossRefGoogle Scholar
  23. 23.
    Sangsten J, Pelton AD (1991) The Li–Pt (lithium–platinum) system. J Phase Equilib 12:678CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Sung-Wook Kim
    • 1
    • 2
  • Sang-Kwon Lee
    • 1
  • Hyun Woo Kang
    • 1
  • Eun-Young Choi
    • 1
  • Wooshin Park
    • 1
  • Sun-Seok Hong
    • 1
  • Seung-Chul Oh
    • 1
  • Jin-Mok Hur
    • 1
  1. 1.Nuclear Fuel Cycle Process Development GroupKorea Atomic Energy Research InstituteDaejeonRepublic of Korea
  2. 2.Department of Quantum Energy Chemical EngineeringUniversity of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations