Journal of Radioanalytical and Nuclear Chemistry

, Volume 311, Issue 1, pp 503–511 | Cite as

Association and migration behavior of trace metals with humus colloidal particles in aquatic subsurface medium

  • Hirakendu Basu
  • Rakesh Kumar Singhal
  • Mehzabin Vivek Pimple
  • Sudeshna Saha


In this study, we investigate the influence of humic acid on the migration of trace metals (Fe, Ca, Mg, Cu, Sr, Zn) in the saturated subsurface medium. Migration study was carried out in a specially fabricated soil column. The results of this study demonstrate that presence of humic acid in the colloidal form play a key role in mobility of trace metals in aquatic subsurface medium. Migration of elements like Fe, Ca, Mg, Cu were facilitated by the presence of the humus colloids whereas presence of Zn, Sr in the hydrated form was evident from the experimental results. The observation was explained based on the linear attenuation coefficient (LAC).


Humic acid Colloids Ultrafiltration ICP-OES SEM–EDS Linear attenuation coefficient 

Supplementary material

10967_2016_5056_MOESM1_ESM.pdf (507 kb)
Supplementary material 1 (PDF 508 kb)


  1. 1.
    Honeyman BD (1999) Colloidal culprits in contamination. Nature 397:23–24CrossRefGoogle Scholar
  2. 2.
    Wilkinson KJ, Lead JR (2007) Environmental colloids and particles: behavior, separation, and characterization. Wiley, West SussexGoogle Scholar
  3. 3.
    Ross JM, Sherrel RM (2004) The role of colloids in trace metal transport and adsorption behavior in New Jersey Pineland streams. Limnol Oceanogr 44:1019–1034CrossRefGoogle Scholar
  4. 4.
    Jones N, Bryan ND (1998) Colloidal properties of humic substances. Adv Colloid Interface Sci 78:1–48CrossRefGoogle Scholar
  5. 5.
    Andersson PS, Porcelli D, Gustafsson Ö, Ingri J, Wasserburg GJ (2001) The importance of colloids for the behavior of uranium isotopes in the low-salinity zone of a stable estuary. Geochim Cosmochim Acta 65:13–25CrossRefGoogle Scholar
  6. 6.
    DeNovio NM, Saiers JE, Ryan JN (2004) Colloid movement in unsaturated porous media: recent advances and future directions. Vadose Zone J 3:338–351Google Scholar
  7. 7.
    Kersting AB, Efurd DW, Finnegan DL, Rokop DJ, Smith DK, Thompson JL (1999) Migration of plutonium in ground water at the Nevada Test Site. Nature 397:56–59CrossRefGoogle Scholar
  8. 8.
    Artinger R, Buckau G, Zeh P, Geraedts K, Vancluysen J, Maes A, Kim JI (2003) Humic colloid mediated transport of tetravalent actinides and technetium. Radiochim Acta 91:743–750CrossRefGoogle Scholar
  9. 9.
    Flury M, Mathison JB, Harsh JB (2002) In situ mobilization of colloids and transport of cesium in Hanford sediments. Environ Sci Technol 36:5335–5341CrossRefGoogle Scholar
  10. 10.
    Kersting AB (2013) Plutonium transport in the environment. Inorg Chem 52:3533–3546CrossRefGoogle Scholar
  11. 11.
    Basu H, Singhal RK, Pimple MV (2016) Highly efficient removal of TiO2 nanoparticles from aquatic bodies by silica microsphere impregnated Ca-alginate. New J Chem 40:3177–3186CrossRefGoogle Scholar
  12. 12.
    Kim MH, Yu MJ (2005) Characterization of NOM in the Han River and evaluation of treatability using UF–NF membrane. Environ Res 97:116–123CrossRefGoogle Scholar
  13. 13.
    De-Wit JCM, Van RWH, Koopal LK (1993) Proton binding to humic substances: electrostatic effects. Environ Sci Technol 27:2005–2014CrossRefGoogle Scholar
  14. 14.
    Basu H, Singhal RK, Pimple MV, Manisha V, Bassan MKT, Reddy AVR, Mukherjee T (2011) Development of naturally occurring siliceous material for the preferential removal of thorium from U–Th from aquatic environment. J Radioanal Nucl Chem 289:231–237CrossRefGoogle Scholar
  15. 15.
    Basu H, Singhal RK, Pimple MV, Reddy AVR (2015) Synthesis and characterization of silica microsphere and their application in removal of uranium and thorium from water. Int J Environ Sci Technol 12(6):1899–1906CrossRefGoogle Scholar
  16. 16.
    Lowe J, Hossain MdM (2008) Application of ultrafiltration membranes for removal of humic from drinking water. Desalination 218:343–354CrossRefGoogle Scholar
  17. 17.
    Mozia S, Tomaszewska M, Morawski AW (2005) Studies on the effect of humic acids and phenol on adsorption–ultrafiltration process performance. Water Res 39:501–509CrossRefGoogle Scholar
  18. 18.
    Vatai GG, Bekassy-Molnar E (2004) Membrane screening for humic substances removal. Desalination 162:111–116CrossRefGoogle Scholar
  19. 19.
    Suteerapataranon S, Bouby M, Geckeis H, Fangha-nel T, Grudpan K (2006) Interaction of trace elements in acid mine drainage solution with humic acid. Water Res 40:2044–2054CrossRefGoogle Scholar
  20. 20.
    Guéguen C, Dominik J (2003) Partitioning of trace metals between particulate, colloidal and truly dissolved fractions in a polluted river: the Upper Vistula River (Poland). Appl Geochem 18:457–470CrossRefGoogle Scholar
  21. 21.
    Rodolfod P, Julioc R, Porasso JB, Marca VGT (2002) Analysis of trace metal humic acid interactions using counterion condensation theory. Environ Sci Technol 36:3815–3821CrossRefGoogle Scholar
  22. 22.
    Wang Y, Frutschi M, Suvorova E, Phrommavanh V, Descostes M, Osman AAA, Geipel G, Latmani RB (2013) Mobile uranium(IV)-bearing colloids in a mining-impacted wetland. Nat Commun 4:2942Google Scholar
  23. 23.
    Tufenkji N, Elimelech M (2004) Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ Sci Technol 38:529–536CrossRefGoogle Scholar
  24. 24.
    Song L, Elimelech M (1994) Transient deposition of colloidal particles in heterogeneous porous media. J Colloid Interface Sci 167:301–313CrossRefGoogle Scholar
  25. 25.
    Roucoux A, Schulz J, Patin RH (2002) Reduced transition metal colloids: a novel family of reusable catalysts. Chem Rev 102:3757–3778CrossRefGoogle Scholar
  26. 26.
    Basu H, Singhal RK, Pimple MV, Kumar A, Reddy AVR (2015) Association and migration of uranium and thorium with silica colloidal particles in saturated subsurface zone. J Radioanal Nucl Chem 303:2283–2290Google Scholar
  27. 27.
    Mantoura RFC, Dickson A, Riley JP (1978) The complexation of metals with humic materials in natural waters. Estuar Coast Mar Sci 6:387–408CrossRefGoogle Scholar
  28. 28.
    Tipping E, Rey-Castro C, Bryan SE, Hamilton-Taylor SJ (2002) Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation. Geochim Cosmochim Acta 66:3211–3224CrossRefGoogle Scholar
  29. 29.
    Kinniburgh DG, Riemsdijk WHV, Koopal LK, Borkovec M, Benedetti MF, Avena MJ (1999) Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids Surf A 151:147–166CrossRefGoogle Scholar
  30. 30.
    Kinniburgh DG, Milne CJ, Benedetti MF, Pinheiro JP, Filiusm J, Koopal LK, Riemsdijk WHV (1996) Metal ion binding by humic acid: application of the NICA-Donnan model. Environ Sci Technol 30:1687–1698CrossRefGoogle Scholar
  31. 31.
    Bouby M, Geckeis H, Lützenkirchen J, Mihaia S, Schäfera T (2011) Interaction of bentonite colloids with Cs, Eu, Th and U in presence of humic acid: a flow field-flow fractionation study. Geochim Cosmochim Acta 75:3866–3880CrossRefGoogle Scholar
  32. 32.
    Tipping E (1998) Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat Geochem 4:3–47CrossRefGoogle Scholar
  33. 33.
    Grolimund D, Elimelech M, Borkovec M, Barmettler K, Kretzschmar R, Sticher H (1998) Transport of in situ mobilized colloidal particles in packed soil columns. Environ Sci Technol 32:3562–3569CrossRefGoogle Scholar
  34. 34.
    Liu D, Johnson PR, Elimelech M (1995) Colloid deposition dynamics in flow through porous media: role of electrolyte concentration. Environ Sci Technol 29:2963–2973CrossRefGoogle Scholar
  35. 35.
    IAEA (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and fresh water environments technical reports series. International Atomic Energy Agency, ViennaGoogle Scholar
  36. 36.
    Singhal RK, Basu H, Reddy AVR (2013) Removal of environmental level of 239+240Pu and 241Am from groundwater by using humic coated colloidal suspension of goethite (αFeO(OH)). J Radioanal Nucl Chem 295:1345–1351CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Hirakendu Basu
    • 1
  • Rakesh Kumar Singhal
    • 1
  • Mehzabin Vivek Pimple
    • 1
  • Sudeshna Saha
    • 1
  1. 1.Analytical Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations