Sorption separation of cobalt and cadmium by straw-derived biochar: a radiometric study

  • Martin Pipíška
  • Barbora Micháleková Richveisová
  • Vladimír Frišták
  • Miroslav Horník
  • Lucia Remenárová
  • Richard Stiller
  • Gerhard Soja


Biochar prepared from Triticum aestivum straw (SB) was used to investigate the sorption separation of Cd2+ and Co2+ ions in single and binary systems. The maximum adsorption capacity of SB was higher for Cd2+ ions and the process was strongly pH dependent. Adsorption data in the binary system Cd2+–Co2+ were well described by the extended Langmuir model and the values of affinity parameter b indicate a higher affinity of SB to Cd2+ in comparison with Co2+ ions. The mechanisms for the removal of Cd and Co by biochar were evidenced by the different instrumental analyses as well as by chemical speciation modeling. Elemental mapping of SB revealed spatial distributions of cobalt and cadmium on biochar surfaces. The role of functional groups in metal sorption was confirmed by FTIR. Results demonstrate that SB is a promising heavy metal-immobilizing agent for contaminated soils or water.


Straw biochar 60Co 109Cd Adsorption Binary system Mechanism 



This work was supported by a project of the Operational Program Research and Development and cofinanced by the European Regional Development Fund (ERDF) with the Grant Number ITMS 26220220191.


  1. 1.
    Adamcová R, Suraba V, Krajňák A, Rosskopfová O, Galamboš M (2014) First shrinkage parameters of Slovak bentonites considered for engineered barriers in the deep geological repository of high-level radioactive waste and spent nuclear fuel. J Radioanal Nucl Chem 302:737–743CrossRefGoogle Scholar
  2. 2.
    Ahmad M, Lee SS, Dou X, Mohan D, Sung JK, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544CrossRefGoogle Scholar
  3. 3.
    Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33CrossRefGoogle Scholar
  4. 4.
    Apiratikul R, Pavasant P (2006) Sorption isotherm model of binary component sorption of copper, cadmium, and lead ions using dried green macroalga, Caulerpa lentillifera. Chem Eng J 119:135–145CrossRefGoogle Scholar
  5. 5.
    Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380CrossRefGoogle Scholar
  6. 6.
    Beesley L, Marmiroli M (2011) The immobilization and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159:474–480CrossRefGoogle Scholar
  7. 7.
    Cao XD, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228CrossRefGoogle Scholar
  8. 8.
    Caporale AG, Pigna M, Sommella A, Conte P (2014) Effect of pruning-derived biochar on heavy metals removal and water dynamics. Biol Fert Soils 50:1211–1222CrossRefGoogle Scholar
  9. 9.
    Chen B, Chen Z (2009) Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76:127–133CrossRefGoogle Scholar
  10. 10.
    Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride MB, Hay AG (2011) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol 102:8877–8884CrossRefGoogle Scholar
  11. 11.
    Ding Y, Liu Y, Liu S, Li Z, Tan X, Huang X, Zeng G, Zhou Z, Zheng B, Cai T (2016) Competitive removal of Cd(II) and Pb(II) by biochgars produced from water hyacinth: performance and mechanism. RSC Adv. doi: 10.1039/C5RA26248H Google Scholar
  12. 12.
    Dong X, Wang CH, Li H, Wu M, Liao S, Zhang D, Pan B (2014) The sorption of heavy metals on thermally treated sediments with high organic matter content. Bioresour Technol 160:123–128CrossRefGoogle Scholar
  13. 13.
    Freundlich HMF (1906) Über die adsorption in lösungen. Z Phys Chem 57:385–470Google Scholar
  14. 14.
    Frišták V, Pipíška M, Valovčiaková M, Lesný J, Rozložník M, (2014) Monitoring 60Co activity for the characterization of the sorption process of Co2+ ions in municipal activated sludge. J Radioanal Nucl Chem 299:1607–1614CrossRefGoogle Scholar
  15. 15.
    Frišták V, Pipíška M, Lesný J, Soja G, Friesl-Hanl W, Packová A (2015) Utilization of biochar sorbents for Cd2+, Zn2+ and Cu2+ ions separation from aqueous solutions: comparative study. Environ Monit Assess 187:4093CrossRefGoogle Scholar
  16. 16.
    Gai X, Wang H, Liu J, Zhai L, Liu S, Ren T (2014) Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS One. doi: 10.1371/journal.pone.0113888 Google Scholar
  17. 17.
    Galamboš M, Suchánek P, Rosskopfová O (2012) Sorption of anthropogenic radionuclides on natural and synthetic inorganic sorbents. J Radioanal Nucl Chem 293:613–633CrossRefGoogle Scholar
  18. 18.
    Gomes PC, Fontes MP, da Silva AG, de S Mendonca E, Netoo AR (2001) Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils. Soil Sci Soc Am J 65:1115–1121CrossRefGoogle Scholar
  19. 19.
    Gustafson J.P.: Visual-MINTEQ, version 3.0. (2010) Accessed May 2010
  20. 20.
    Han X, Liang CHF, Li TQ, Wang K, Huang HG, Yang X (2013) Simultaneous removal of cadmium and sulfamethoxazole from aqueous solution by rice straw biochar. J Zhejiang Univ Sci B 14:640–649CrossRefGoogle Scholar
  21. 21.
    Harvey OR, Herbert BE, Rhue RD, Kuo LJ (2011) Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Environ Sci Technol 45:5550–5556CrossRefGoogle Scholar
  22. 22.
    Hawari AH, Mulligan CN (2006) Heavy metals uptake mechanisms in a fixed-bed column by calcium-treated anaerobic biomass. Process Biochem 41:187–198CrossRefGoogle Scholar
  23. 23.
    Horvath G, Kawazoe K (1983) Method for the calculation of effective pore-size distribution in molecular-sieve carbon. J Chem Eng Jpn 16:470–475CrossRefGoogle Scholar
  24. 24.
    Inyang M, Gao B, Yao Y, Xue Y, Zimmerman AR, Pullammanappallil P, Cao X (2012) Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour Technol 110:50–56CrossRefGoogle Scholar
  25. 25.
    Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253CrossRefGoogle Scholar
  26. 26.
    Kılıc M, Kırbıyık C, Cepeliogullar Ö, Pütüna AE (2013) Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis. Appl Surf Sci 283:856–862CrossRefGoogle Scholar
  27. 27.
    Kim WK, Shim T, Kim YS, Hyun S, Ryu Ch, Park YK, Jung J (2013) Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresour Technol 138:266–270CrossRefGoogle Scholar
  28. 28.
    Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek MH, Soja G (2012) Characterization of slow pyrolysis biochars: effect of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41:990–1000CrossRefGoogle Scholar
  29. 29.
    Kloss S, Zehetner F, Wimmer B, Bücker J, Rempt F, Soja G (2014) Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions. J Plant Nutr Soil Sci 177:3–15CrossRefGoogle Scholar
  30. 30.
    Kołodyńska D, Wnętrzak R, Leahy JJ, Hayes MHB, Kwapiński W, Hubicki Z (2012) Kinetic and adsorptive characterization of biochar in metal ions removal. Chem Eng J 197:295–302CrossRefGoogle Scholar
  31. 31.
    Langmuir I (1918) Adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403CrossRefGoogle Scholar
  32. 32.
    Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836CrossRefGoogle Scholar
  33. 33.
    Li M, Liu Q, Guo L, Zhang Y, Lou Z, Wang Y, Qian G (2013) Cu(II) removal from aqueous solution by Spartina alterniflora derived biochar. Bioresource Technol 141:83–88CrossRefGoogle Scholar
  34. 34.
    Liu Q, Wang S, Zheng Y, Luo Z, Cen K (2008) Mechanism study of wood lignin pyrolysis by usingm TG-FTIR analysis. J Anal Appl Pyrolysis 82:170–177CrossRefGoogle Scholar
  35. 35.
    Liu Z, Zhang FS, Wu J (2010) Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel 89:510–514CrossRefGoogle Scholar
  36. 36.
    Lu H, Zhang W, Yang Y, Huang X, Wang S, Qiu R (2012) Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res 46:854–862CrossRefGoogle Scholar
  37. 37.
    Markham EC, Benton AF (1931) The adsorption of gas mixtures by silica. J Am Chem Soc 53:497–507CrossRefGoogle Scholar
  38. 38.
    Melo LCA, Coscione AR, Abreu CA, Puga AP, Camargo OA (2013) Influence of pyrolysis temperature on cadmium and zinc sorption capacity of sugar cane straw-derived biochar. BioResources 8:4992–5004CrossRefGoogle Scholar
  39. 39.
    Moreno-Tovar R, Terrés E, Rangel-Mendez JR (2014) Oxidation and EDX elemental mapping characterization of an ordered mesoporous carbon: Pb(II) and Cd(II) removal. Appl Surf Sci 303:373–380CrossRefGoogle Scholar
  40. 40.
    Nieboer E, Richardson HS (1980) The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environ Pollut 3:3–26CrossRefGoogle Scholar
  41. 41.
    Park JH, Ok YS, Kim SH, Cho JS, Heo JS, Delaune RD, Seo DC (2016) Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 142:77–83CrossRefGoogle Scholar
  42. 42.
    Partelová D, Šuňovská A, Marešová J, Horník M, Pipíška M, Hostin S (2015) Removal of contaminants from aqueous solutions using hop (Humulus lupulus L.) agricultural by-products. Nova Biotechnol Chim 14:212–227Google Scholar
  43. 43.
    Peld M, Tõnsuaadu K, Bender V (2004) Sorption and desorption of Cd2+ and Zn2+ ions in apatite-aqueous systems. Environ Sci Technol 38:5626–5632CrossRefGoogle Scholar
  44. 44.
    Popova NN, Bykov GL, Petukhova GA, Pavlov YuS, Tananaev IG, Ershov BG (2013) Studies of physicochemical properties of modified carbon nanomaterials for sorption extraction of radionuclides. III. The effect of oxidizing treatment on sorption of Am(III) from aqueous solutions. Prot Met Phys Chem 49:304–308CrossRefGoogle Scholar
  45. 45.
    Remenárová L, Pipíška M, Horník M, Rozložník M, Augustín J, Lesný J (2012) Biosorption of cadmium and zinc by activated sludge from single and binary solutions: mechanism, equilibrium and experimental design study. J Taiwan Inst Chem Eng 43:433–443CrossRefGoogle Scholar
  46. 46.
    Shaheen SM, Derbalah AS, Moghanm FS (2012) Removal of heavy metals from aqueous solution by zeolite in competitive sorption system. Int J Environ Sci Dev 3:362–367CrossRefGoogle Scholar
  47. 47.
    Shen Z, Jin F, Wang F, McMillan O, Al-Tabbaa A (2015) Sorption of lead by Salisbury biochar produced from British broadleaf hardwood. Bioresour Technol 193:553–556CrossRefGoogle Scholar
  48. 48.
    Thilagavathy P, Santhi T (2014) Kinetics, isotherms and equilibrium study of Co(II) adsorption from single and binary aqueous solutions by acacia nilotica leaf carbon. Chin J Chem Eng 22:1193–1198CrossRefGoogle Scholar
  49. 49.
    Trakal L, Šigut R, Šillerová H, Faturíková D, Komárek M (2014) Copper removal from aqueous solution using biochar: effect of chemical activation. Arab J Chem 7:43–52CrossRefGoogle Scholar
  50. 50.
    Uchimiya M (2014) Influence of pH, ionic strength, and multidentate ligand on the interaction of CdII with biochars. ACS Sustain Chem Eng 2:2019–2027CrossRefGoogle Scholar
  51. 51.
    Uchimiya M, Chang S, Klasson KT (2011) Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater 190:432–441CrossRefGoogle Scholar
  52. 52.
    Uchimiya M, Lima IM, Thomas Klasson K, Chang S, Wartelle LH, Rodgers JE (2010) Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. J Agric Food Chem 58:5538–5544CrossRefGoogle Scholar
  53. 53.
    Vilvanathan S, Shanthakumar S (2015) Biosorption of Co(II) ions from aqueous solution using Chrysanthemum indicum: kinetics, equilibrium and thermodynamics. Process Saf Environ Prot 96:98–110CrossRefGoogle Scholar
  54. 54.
    Voronina AV, Blinova MO, Kulyaeva IO, Sanin PY, Semenishchev VS, Afonin YD (2015) Sorption of cesium radionuclides from aqueous solutions onto natural and modified aluminosilicates. Radiochemistry 57:522–529CrossRefGoogle Scholar
  55. 55.
    Wang J, Liu H, Yang S, Zhang J, Zhang C, Wu H (2014) Physicochemical characteristics and sorption capacities of heavy metal ions of activated carbons derived by activation with different alkyl phosphate triesters. Appl Surf Sci 316:443–450CrossRefGoogle Scholar
  56. 56.
    Wang P, Yin Y, Guo Y, Wang C (2015) Removal of chlorpyrifos from waste water by wheat straw-derived biochar synthesized through oxygen-limited method. RSC Adv 5:72572–72578CrossRefGoogle Scholar
  57. 57.
    Wang Y, Hu Y, Zhao X, Wang S, Xing G (2013) Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energ Fuel 27:5890–5899CrossRefGoogle Scholar
  58. 58.
    Wu W, Yang M, Feng Q, McGrouther K, Wang H, Lu H, Chen Y (2012) Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenerg 47:268–276CrossRefGoogle Scholar
  59. 59.
    Wu Y, Fan Y, Zhang M, Ming Z, Yang S, Arkin A, Fang P (2016) Functionalized agricultural biomass as a low-cost adsorbent: utilization of rice straw incorporated with amine groups for the adsorption of Cr(VI) and Ni(II) from single and binary systems. Biochem Eng J 105:27–35CrossRefGoogle Scholar
  60. 60.
    Xu X, Cao X, Zhao L, Wang H, Yu H, Gao B (2013) Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ Sci Pollut R 20:358–368CrossRefGoogle Scholar
  61. 61.
    Yakkala K, Yu MR, Roh H, Yang JK, Chang YY (2013) Buffalo weed (Ambrosia trifida L. var. trifida) biochar for cadmium(II) and lead(II) adsorption in single and mixed system. Desalin Water Treat 51:7732–7745CrossRefGoogle Scholar
  62. 62.
    Zhang F, Wang X, Yin D, Peng B, Tan C, Liu Y, Tan X, Wu S (2015) Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). J Environ Manage 153:68–73CrossRefGoogle Scholar
  63. 63.
    Zhao X, Ouyang W, Hao F, Lin Ch, Wang F, Han S, Geng X (2013) Properties comparison of biochars from corn straw with different pretreatment and sorption behavior of atrazine. Bioresour Technol 147:338–344CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Martin Pipíška
    • 1
    • 2
  • Barbora Micháleková Richveisová
    • 1
  • Vladimír Frišták
    • 3
  • Miroslav Horník
    • 1
  • Lucia Remenárová
    • 1
  • Richard Stiller
    • 1
  • Gerhard Soja
    • 3
  1. 1.Department of Ecochemistry and Radioecology, Faculty of Natural SciencesUniversity of SS. Cyril and Methodius in TrnavaTrnavaSlovak Republic
  2. 2.Department of ChemistryTrnava University in TrnavaTrnavaSlovak Republic
  3. 3.Energy DepartmentAIT Austrian Institute of Technology GmbHTulln an der DonauAustria

Personalised recommendations