Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 311, Issue 2, pp 1235–1241 | Cite as

A Brazilian coal fly ash as a potential source of rare earth elements

  • Camila N. Lange
  • Iara M. C. Camargo
  • Ana Maria G. M. Figueiredo
  • Liliana Castro
  • Marina B. A. Vasconcellos
  • Regina B. Ticianelli
Article

Abstract

Rare earth elements (REEs) have several applications and their market demands have increased. Recently, coal fly ash (CFA) has been considered as a source of these elements. The purpose of this study was to evaluate the REEs content in a CFA from a Brazilian coal power plant by instrumental neutron analysis, to classify it according to commercial purposes and to assess the weathering impact in the REEs content, since it is held in fields nearby the power plant. The results pointed no significant REEs leachability and indicated this CFA as a promising REEs source.

Keywords

Brazilian coal fly ash Rare earth elements Neutron activation analysis Raw material 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from FAPESP (São Paulo Research Foundation). We are grateful to Cambui Coal Company (Companhia Carbonifera Cambui) for permission to carry out this project. The author C.N Lange thanks for the fellowship from the Brazilian Nuclear Energy Comission (CNEN).

References

  1. 1.
    Hayes-Labruto L, Schillebeeckx SJD, Workman M, Shah N (2013) Contrasting perspectives on China’s rare earths policies: reframing the debate through a stakeholder lens. Energy Policy. doi: 10.1016/j.enpol.2013.07.121 Google Scholar
  2. 2.
    Massari S, Ruberti M (2013) Rare earth elements as critical raw materials: focus on international markets and future strategies. Res Policy. doi: 10.1016/j.resourpol.2012.07.001 Google Scholar
  3. 3.
    Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A et al (2013) Recycling of rare earths: a critical review. J Clean Prod. doi: 10.1016/j.jclepro.2012.12.037 Google Scholar
  4. 4.
    Bardano BMM (2015) Séries Estudos e Documentos 86: Potencial de aproveitamento de fontes secundárias para terras raras: resíduos industriais. CETEM/MCTI, Rio de JaneiroGoogle Scholar
  5. 5.
    Funari V, Bokhari SNH, Vigliotti L, Meisel T, Braga R (2016) The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting. J Hazard Mater. doi: 10.1016/j.jhazmat.2015.06.015 Google Scholar
  6. 6.
    Seredin VV, Dai S (2012) Coal deposits as potential alternative sources for lanthanides and yttrium. Int J Coal Geol. doi: 10.1016/j.coal.2011.11.001 Google Scholar
  7. 7.
    Hower J, Granite E, Mayfield D, Lewis A, Finkelman R (2016) Notes on contributions to the science of rare earth element enrichment in coal and coal combustion by-products. Minerals 6:32CrossRefGoogle Scholar
  8. 8.
    Blissett RS, Smalley N, Rowson NA (2014) An investigation into six coal fly ashes from the United Kingdom and Poland to evaluate rare earth element content. Fuel. doi: 10.1016/j.fuel.2013.11.053 Google Scholar
  9. 9.
    Dai S, Graham IT, Ward CR (2016) A review of anomalous rare earth elements and yttrium in coal. Int J Coal Geol. doi: 10.1016/j.coal.2016.04.005 Google Scholar
  10. 10.
    Franus W, Wiatros-Motyka MM, Wdowin M (2015) Coal fly ash as a resource for rare earth elements. Environ Sci Pollut Res 22:9464–9474CrossRefGoogle Scholar
  11. 11.
    Zhang WC, Rezaee M, Bhagavatula A, Li YG, Groppo J, Honaker R (2015) A review of the occurrence and promising recovery methods of rare earth elements from coal and coal by-products. Int J Coal Prep Util 35:295–330CrossRefGoogle Scholar
  12. 12.
    Gomes HI, Mayers WM, Rogerson M, Steward DI, Burked IT (2016) Alkaline residues and the environment: a review of impacts, management practices and opportunities. J Clean Prod. doi: 10.1016/j.clepro.2015.09.111 Google Scholar
  13. 13.
    Rohde GM, Zwonok O, Chies F, da Silva NLW (2006) Cinza de Carvão Fóssil no Brasil: Aspectos Técnicos e Ambientais v.1. Porto Alegre, Porto AlegreGoogle Scholar
  14. 14.
    da Silva RC, de Marchi Neto I, Seifert SS (2016) Electricity supply security and the future role of renewable energy sources in Brazil. Renew Sustain Energy Rev 56:328–341CrossRefGoogle Scholar
  15. 15.
    Ferrarini SF, Cardoso AM, Paprocki A, Pires M (2016) Integrated synthesis of zeolites using coal fly ash: element distribution in the products, washing waters and effluent. J Braz Chem Soc 1:34–37Google Scholar
  16. 16.
    Cunico P, Kumar A, Fungaro DA (2015) Adsorption of dyes from simulated textile wastewater onto modified nanozeolite from coal fly ash. J Nanosci Nanoeng 3:148–161Google Scholar
  17. 17.
    Alcântara RR, Izidoro JC, Fungaro DA (2015) Synthesis and characterization of surface modified zeolitic nanomaterial from coal fly ash. Int J Mater Chem Phys 1:370–377Google Scholar
  18. 18.
    Izidoro JDC, Fungaro DA, Abbott JE, Wang S (2013) Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems. Fuel. doi: 10.1016/j.fuel.2012.07.060 Google Scholar
  19. 19.
    Zimmer A, Bergmann CP (2007) Fly ash of mineral coal as ceramic tiles raw material. Waste Manag 27:59–68CrossRefGoogle Scholar
  20. 20.
    Basu M, Pande M, Bhadoria PBS, Mahapatra SC (2009) Potential fly-ash utilization in agriculture: a global review. Prog Nat Sci Prog Nat Sci 19:1173–1186CrossRefGoogle Scholar
  21. 21.
    Flues M, Sato IM, Scapin MA, Cotrim MEB, Camargo IMC (2013) Toxic elements mobility in coal and ashes of Figueira coal power plant, Brazil. Fuel 103:430–436CrossRefGoogle Scholar
  22. 22.
    Institute of Astronomy, Geophysics and Atmospheric Sciences, IAG (2008) Boletim climatológico anual da estação meteorológica do IAG/USP. IAG-USP, São PauloGoogle Scholar
  23. 23.
    ISO 13528:2005 (2005) Statistical methods for use in proficiency testing by interlaboratory comparisons. International organization for standardization, GenevaGoogle Scholar
  24. 24.
    Machado CN, Maria SP, Saiki M, Figueiredo AMG (1998) Determination of rare earth elements in the biological reference materials pine needles and spruce needles by neutron activation analysis. J Radioanal Nucl Chem 233:59–61CrossRefGoogle Scholar
  25. 25.
    Ribeiro IS, Genezini FA, Saiki M, Zahn GS (2013) Determination of uranium fission interference factors for INAA. J Radioanal Nucl Chem 296:759–762CrossRefGoogle Scholar
  26. 26.
    Izquierdo M, Querol X (2012) Leaching behavior of elements from coal combustion fly ash: an overview. Int J Coal Geol. doi: 10.1016/j.coal.2011.10.006 Google Scholar
  27. 27.
    Pires M, Querol X (2004) Characterization of Candiota (South Brazil) coal and combustion by-product. Int J Coal Geol 60:57–72CrossRefGoogle Scholar
  28. 28.
    Silva L, Ward C, Hower J, Izquierdo M, Waanders F, Oliveira M et al (2010) Mineralogy and leaching characteristics of coal ash from a major Brazilian power plant. Coal Combust Gasif Prod 2:51–65Google Scholar
  29. 29.
    Bentlin FRS (2012) Desenvolvimento de métodos analíticos para a determinação de lantanídeos por técnicas de espectrometria atômica com plasma indutivamente acoplado. Doctoral thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre http://hdl.handle/10183/49696. Accessed in 21 Apr 2016
  30. 30.
    Campaner VP (2013) Geochemical dispersion of elements and radionuclides in the atmosphere and soil of an area with mining and coal-fired thermoelectric power plant activities. Doctoral thesis, Universidade Estadual de Campinas, Campinas, Brasil. Retrieved from http://www.bibliotecadigital.unicamp.br/document/?code=000908841. Accessed in 21 April 2016
  31. 31.
    Ketris MP, Yudovich YE (2009) Estimation of clarkes for carbonaceous biolithes: world average for trace element contents in black shales and coals. Int J Coal Geol 78:135–148CrossRefGoogle Scholar
  32. 32.
    Taylor SR, McLennan SH (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265CrossRefGoogle Scholar
  33. 33.
    Flues M, Carmargo IMC, Silva PSC, Mazzilli BP (2006) Radioactivity of coal and ashes from Figueira coal power plant in Brazil. J Radioanal Nucl Chem 270:597–602CrossRefGoogle Scholar
  34. 34.
    Depoi FS, Pozebon D, Kalkreuth WD (2008) Chemical characterization of feed coals and combustion-by-products from Brazilian power plants. Int J Coal Geol 76:227–236CrossRefGoogle Scholar
  35. 35.
    Levandowski J, Kalkreuth W (2009) Chemical and petrographical characterization of feed coal, fly ash and bottom ash from Figueira power plant. Int J Coal Geol, Paraná. doi: 10.1016/j.coal.2008.05.005 Google Scholar
  36. 36.
    Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal supergroup, South Africa. Precambrian Res 79:37–55CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Camila N. Lange
    • 1
  • Iara M. C. Camargo
    • 1
  • Ana Maria G. M. Figueiredo
    • 1
  • Liliana Castro
    • 1
  • Marina B. A. Vasconcellos
    • 1
  • Regina B. Ticianelli
    • 1
  1. 1.Instituto de Pesquisas Energéticas e Nucleares, (IPEN-CNEN/SP)São PauloBrazil

Personalised recommendations