Journal of Radioanalytical and Nuclear Chemistry

, Volume 311, Issue 1, pp 611–615 | Cite as

Photon activation analysis as a tool for evidentiary sample identification: a feasibility study

  • Valeriia N. Starovoitova
  • Christian Segebade


In this study we investigated the feasibility of using photon activation analysis (PAA) for the identification and individualization of crime scene evidence. We prepared six samples of stainless steel knife blades belonging to same or different knives and activated them with bremsstrahlung photons produced by a 30 MeV electron beam. A number of alloying elements and impurities were identified by gamma-spectroscopy. Comparing the ratios of concentrations of Ti, Cr, As, Co, and Ni, allowed us to easily attribute the samples. While more work is needed to optimize the analytical method and improve its sensitivity, we believe PAA can be successfully used for non-destructive evidence materials identification.


Photon activation analysis Forensic science Trace evidence 



The authors are thankful to Professor Doug Wells for helpful suggestions and discussions and to the Idaho Accelerator Center staff for their support in conducting the experiment.


  1. 1.
    Roux C, Taudte RV, Lennard C (2013) X-Ray fluorescence in forensic science. Encycl Anal Chem. doi: 10.1002/9780470027318.a1124.pub2 Google Scholar
  2. 2.
    Brinsko KM (2010) Optical characterization of some modern “eco-friendly” fibers. J Forensic Sci 55:915–923. doi: 10.1111/j.1556-4029.2010.01369.x CrossRefGoogle Scholar
  3. 3.
    Petraco N, Kubic TA, Petraco NDK (2008) Case studies in forensic soil examinations. Forensic Sci Int 178:e23–e27. doi: 10.1016/j.forsciint.2008.03.008 CrossRefGoogle Scholar
  4. 4.
    Zieba-Palus J, Borusiewicz R, Kunicki M (2008) PRAXIS-combined mu-Raman and mu-XRF spectrometers in the examination of forensic samples. Forensic Sci Int 175:1–10. doi: 10.1016/j.forsciint.2007.04.230 CrossRefGoogle Scholar
  5. 5.
    Berendes A, Neimke D, Schumacher R, Barth M (2006) A versatile technique for the investigation of gunshot residue patterns on fabrics and other surfaces: m-XRF. J Forensic Sci 51:1085–1090. doi: 10.1111/j.1556-4029.2006.00225.x CrossRefGoogle Scholar
  6. 6.
    Reid L, Chana K, Bond JW et al (2010) Stubs versus swabs? A comparison of gunshot residue collection techniques. J Forensic Sci 55:753–756. doi: 10.1111/j.1556-4029.2010.01332.x CrossRefGoogle Scholar
  7. 7.
    Audette RJ, PRF E (1979) Rapid, systematic, and comprehensive classification system for the identification and comparison of motor vehicle paint samples, 1—the nature and scope of the classification system. J Forensic Sci 24:790–807CrossRefGoogle Scholar
  8. 8.
    Cook R, Paterson MD (1978) New techniques for the identification of microscopic samples of textile fibres by infrared spectroscopy. Forensic Sci Int 12:237–243. doi: 10.1016/0379-0738(78)90009-9 CrossRefGoogle Scholar
  9. 9.
    Williams RL, Kemp GS, Totty RN et al (1983) Analysis of photocopying toners by infrared spectroscopy. Forensic Sci Int 22:85–95. doi: 10.1016/0379-0738(83)90122-6 CrossRefGoogle Scholar
  10. 10.
    Virkler K, Lednev IK (2009) Blood species identification for forensic purposes using Raman spectroscopy combined with advanced statistical analysis. Anal Chem 81:7773–7777. doi: 10.1021/ac901350a CrossRefGoogle Scholar
  11. 11.
    Suzuki EM, Gresham WR (1986) Forensic science applications of diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS): II. Direct analysis of some tablets, capsule powders, and powders. J Forensic Sci 31:11908J. doi: 10.1520/JFS11908J CrossRefGoogle Scholar
  12. 12.
    Grant DM, Peters CA, Grant DM, Peters CA (2000) Atomic spectroscopy for forensic applications. Encycl Anal Chem. doi 10(1002/9780470027318):a1110Google Scholar
  13. 13.
    Yinon J (1995) Forensic applications of mass spectrometry. CRC Press, Boca RatonGoogle Scholar
  14. 14.
    Council NR (2009) Strengthening forensic science in the United States. doi: 10.17226/12589 Google Scholar
  15. 15.
    Sun ZJ, Wells DP, Segebade C et al (2012) A provenance study of coffee by photon activation analysis. J Radioanal Nucl Chem 296:293–299. doi: 10.1007/s10967-012-2021-6 CrossRefGoogle Scholar
  16. 16.
    Segebade C (2013) Edward’s sword? A non-destructive study of a medieval king’s sword. AIP Conf Proc 1525:417. doi: 10.1063/1.4802361
  17. 17.
    Galatanu V, Engelmann C (1982) Analyse multielementaire des cheveux par photoactivation nucleaire. J Radioanal Chem 74:161–180. doi: 10.1007/BF02520369 CrossRefGoogle Scholar
  18. 18.
    Kanda Y, Oikawa T, Niwaguchi T (1980) Multi-element determinations of trace elements in glass by instrumental photon activation analysis. Anal Chim Acta 121:157–163CrossRefGoogle Scholar
  19. 19.
    Settle DM (1967) Neutron activation and photonuclear activation analysis of glass samples. Proceedings of First International Conference on Forensic Activation Analysis, San DiegoGoogle Scholar
  20. 20.
    Voigt AF, Abu-Samra A (1965) Analysis of a Damascus steel by neutron and gamma-activation. Rep. IS-1105, Institute for Atomic research and Department of Chemistry and Nuclear Engineering, Iowa State University, Ames, IA, USAGoogle Scholar
  21. 21.
    Segebade C, Weise H-P, Lutz GJ, Adams F (1988) Photon activation analysis. Anal Chim Acta 211:339CrossRefGoogle Scholar
  22. 22.
    Segebade C, Berger A (2008) Photon activation analysis. Encycl Anal Chem. doi: 10.1002/9780470027318.a6211.pub2 Google Scholar
  23. 23.
    Starovoitova V, Segebade C (2016) High intensity photon sources for activation analysis. J Radioanal Nucl Chem. doi: 10.1007/s10967-016-4899-x Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Valeriia N. Starovoitova
    • 1
    • 2
  • Christian Segebade
    • 1
    • 3
  1. 1.Idaho Accelerator CenterPocatelloUSA
  2. 2.Niowave IncLansingUSA
  3. 3.Department of PhysicsAkdeniz UniversityAntalyaTurkey

Personalised recommendations