Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 310, Issue 3, pp 1345–1351 | Cite as

Separation of no-carrier-added 195(m,g),197mHg from Au target by ionic liquid and salt based aqueous biphasic systems

  • Kaustab Ghosh
  • Susanta Lahiri
  • Moumita Maiti
Article

Abstract

Ionic liquid-salt based aqueous biphasic systems (ABS) are examples of ABS of salt–salt combination. In the present study, ABS composed of water soluble ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([bmim]Cl) and kosmotropic salts K3PO4, K2CO3 were applied in the separation of no-carrier-added (NCA) 195(m,g),197mHg radionuclides from bulk Au target. The 195(m,g),197mHg radionuclides were produced by irradiating gold foil with 23 MeV protons. NCA Hg radionuclides were extracted into the IL phase leaving bulk Au in the salt rich phase. At the optimized condition high separation factors, 3.5 × 104 and 5.5 × 104 were obtained when K3PO4 and K2CO3 were used as salt rich phase.

Keywords

Proton irradiated Au target 195(m,g),197mHg Aqueous biphasic systems Ionic liquid Green separation 

Notes

Acknowledgments

We are thankful to BARC-TIFR Pelletron staffs for their help and co-operation during our experiment. We are also thankful to the TIFR target laboratory for their help during target preparation. This work is part of the SINP-DAE-12 five year plan project ‘Trace Ultra Trace Analysis and Isotope Production (TULIP)’ for providing financial support.

References

  1. 1.
    Freire MG, Clàudio AFM, Araùjo JMM, Coutinho JAP, Marrucho IM, Lopes JNC, Rebelo LPN (2012) Aqueous biphasic systems: a boost brought about by using ionic liquids. Chem Soc Rev 41:4966–4995CrossRefGoogle Scholar
  2. 2.
    Ghosh K, Maiti M, Lahiri S (2013) Separation of no-carrier-added 109Cd from natural silver target using RTIL 1-butyl-3-methylimidazolium hexafluorophosphate. J Radioanal Nucl Chem 298:1049–1054CrossRefGoogle Scholar
  3. 3.
    Ghosh K, Maiti M, Lahiri S, Hussain VA (2014) Ionic liquid-salt based aqueous biphasic system for separation of 109Cd from silver target. J Radioanal Nucl Chem 302:925–930CrossRefGoogle Scholar
  4. 4.
    Maiti M, Ghosh K, Lahiri S (2015) Green methods for the radiochemical separations of no-carrier-added 61Cu, 62Zn from 7Li irradiated cobalt target. J Radioanal Nucl Chem 303:2033–2040Google Scholar
  5. 5.
    Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbrey JD, Rogers RD (2003) Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J Am Chem Soc 125:6632–6633CrossRefGoogle Scholar
  6. 6.
    Bridges NJ, Gutowski KE, Rogers RD (2007) Investigation of aqueous biphasic systems formed from solutions of chaotropic salts with kosmotropic salts (salt–salt ABS). Green Chem 9:177–183CrossRefGoogle Scholar
  7. 7.
    World Health Organization (2011) Guidelines for drinking-water quality, 4th edn. WHO, GenevaGoogle Scholar
  8. 8.
    United States Environmental Protection Agency (2009) National primary drinking water regulations. EPA 816-F-09-004Google Scholar
  9. 9.
    Hilson G (2006) Abatement of mercury pollution in the small-scale gold mining industry: restructuring the policy and research agendas. Sci Total Environ 362:1–14CrossRefGoogle Scholar
  10. 10.
    Wackers FJ, Giles RW, Hoffer PB, Lange RC, Berger HJ, Zaret BL, Pytlik L, Plankey M (1982) Gold-195m, a new generator-produced short-lived radionuclide for sequential assessment of ventricular performance by first pass radionuclide angiocardiography. Am J Cardiol 50:89–94CrossRefGoogle Scholar
  11. 11.
    Bett R, Cuninghame JG, Sims HE, Willis HH, Dymond DS, Flatman W, Stone DL, Elliott AT (1983) Development and use of the 195mHg-195mAu generator for first pass radionuclide angiography of the heart. Int J Appl Radiat Isotopes 34:959–963CrossRefGoogle Scholar
  12. 12.
    Walther M, Preusche S, Pietzsch H-J, Bergmann R, Steinbach J (2014) Cyclotron based production of high specific activity [197(m)Hg]HgCl2. Nucl Med Biol 41:646CrossRefGoogle Scholar
  13. 13.
    Ditrói F, Tárkányi F, Takács S, Hermanne A (2016) Activation cross sections of proton induced nuclear reactions on gold up to 65 MeV. Appl Radiat Isotopes 113:96–109CrossRefGoogle Scholar
  14. 14.
    Mandal S, Nayak D (2010) Production, separation and speciation of no-carrier-added Hg radionuclides using greener methodologies. Radiochim Acta 98:45–51CrossRefGoogle Scholar
  15. 15.
    Walther M, Preusche S, Bartel S, Wunderlich G, Freudenberg R, Steinbach J, Pietzsch H-J (2015) Theranostic mercury: 197(m)Hg with high specific activity for imaging and therapy. Appl Radiat Isotopes 97:177–181CrossRefGoogle Scholar
  16. 16.
    Jahn P, Probst H-J, Djaloeis A, Davidson WF, Mayer-Böricke C (1973) Measurement and interpretation of 197Au(d, xnyp) excitation functions in the energy range from 25 to 86 MeV. Nucl Phys A 209:333–347CrossRefGoogle Scholar
  17. 17.
    Gadioli E, Erba EG, Hogan JJ (1977) Pre-equilibrium decay of nuclei with A ≃ 200 at excitation energies to 90 MeV. II Nuovo Cimento A 40:383–400CrossRefGoogle Scholar
  18. 18.
    Tárkányi F, Ditrói F, Hermanne A, Takács S, Király B, Yamazaki H, Baba M, Mohammadi A, Ignatyuk AV (2011) Activation cross-sections of deuteron induced nuclear reactions on gold up to 40 MeV. Nucl Instrum Methods B 269:1389–1400CrossRefGoogle Scholar
  19. 19.
    Nagame Y, Sueki K, Baba S, Nakahara H (1990) Isomeric yield ratios in proton-, 3He-, and α-particle-induced reactions on 197Au. Phys Rev C 41:889–897CrossRefGoogle Scholar
  20. 20.
    Satheesh B, Musthafa MM, Singh BP, Prasad R (2012) Study of isomeric cross-section ratio and pre-equilibrium fraction in proton and alpha particle induced nuclear reactions on 197Au. Int J Mod Phys E 21:1250059CrossRefGoogle Scholar
  21. 21.
    Al-Abyad M, Tárkányi F, Ditrỏi F, Takács S (2013) Excitation function of 3He induced nuclear reactions on natPt up to 26 MeV. Appl Radiat Isotopes 72:73–82CrossRefGoogle Scholar
  22. 22.
    Sudár S, Qaim SM (2006) Cross sections for the formation of 195Hgm, g, 197Hgm, g, and 196Aum, g in α and 3He-particle induced reactions on Pt: effect of level density parameters on the calculated isomeric cross-section ratio. Phys Rev C 73:034613Google Scholar
  23. 23.
    Hermanne A, Tárkányi F, Takács S, Shubin YN, Kovalev S (2006) Experimental determination of activation cross section of alpha-induced nuclear reactions on natPt. Nucl Instrum Methods B 251:333–342CrossRefGoogle Scholar
  24. 24.
    Lahiri S, Roy K (2009) A green approach for sequential extraction of heavy metals from Li irradiated Au target. J Radioanal Nucl Chem 281:531–534CrossRefGoogle Scholar
  25. 25.
    Nayak D, Lahiri S (2002) Production of tracer packet of heavy and toxic elements. J Radioanal Nucl Chem 254:619–623CrossRefGoogle Scholar
  26. 26.
    Lahiri S, Banerjee K, Das NR (1999) Production of carrier free 192,193Hg and 192,193Au in 16O irradiated tantalum target and their separation by liquid-liquid extraction. J Radioanal Nucl Chem 242:497–504CrossRefGoogle Scholar
  27. 27.
    Nayak D, Lahiri S, Ramaswami A (2002) Alternative radiochemical heavy ion activation methods for the production and separation of thallium radionuclides. Appl Radiat Isotopes 57:483–489CrossRefGoogle Scholar
  28. 28.
    Nayak D, Lahiri S, Mukhopadhyay A, Pal R (2003) Application of tracer packet technique to the study of the bio-sorption of heavy and toxic metal radionuclides by algae. J Radioanal Nucl Chem 256:535–539CrossRefGoogle Scholar
  29. 29.
    Maji S, Basu S, Ramaswami A, Lahiri S (2007) Application of tracer packet technique for multielemental uptake studies by ceric vanadate. J Radioanal Nucl Chem 271:391–396CrossRefGoogle Scholar
  30. 30.
    Roy K, Basu S, Ramaswami A, Lahiri S (2003) Application of tracer packet technique for multielemental uptake studies on the inorganic ion exchanger zirconium vanadate. Appl Radiat Isotopes 59:105–108CrossRefGoogle Scholar
  31. 31.
    Maji S, Basu S, Lahiri S (2007) Studies on multielemental uptake of amide incorporated Amberlite IRC-50 using tracer packet techniques. Indian J Chem 46A:97–100Google Scholar
  32. 32.
    Roy K, Basu S, Nayak D, Lahiri S (2004) Studies on the multielemental uptake by thiosemicarbazide incorporated Amberlite IRC-50 using tracer packet technique. Indian J Chem 43A:1152–1155Google Scholar
  33. 33.
    Nayak D, Lahiri S (2006) Biosorption of toxic, heavy, no-carrier-added radionuclides by calcium alginate beads. J Radioanal Nucl Chem 267:59–65CrossRefGoogle Scholar
  34. 34.
    Samanta TD, Laskar S, Nayak D, Lahiri S (2007) Studies on metal-protein interactions: inter-comparison among various approaches. J Radioanal Nucl Chem 273:323–325CrossRefGoogle Scholar
  35. 35.
    Nayak D, DattaSamanta T, Laskar S, Lahiri S (2007) Application of tracer packet technique for studying metal-protein interactions with Erythrina variegata Linn. seed proteins. J Radioanal Nucl Chem 271:387–390CrossRefGoogle Scholar
  36. 36.
    Banerjee A, Lahiri S (2009) Albumin metal interaction: a multielemental radiotracer study. J Radioanal Nucl Chem 279:733–741CrossRefGoogle Scholar
  37. 37.
    Cotton FA, Wilkinson G (1984) The elements of the second and third transition series. Advanced inorganic chemistry—a comprehensive text, 3rd edn. Wiley Eastern Limited, New DelhiGoogle Scholar
  38. 38.
    Mironov IV (2005) Properties of gold(III) hydroxide and aquahydroxogold(III) complexes in aqueous solution. Russ J Inorg Chem 50:1115–1120Google Scholar
  39. 39.
    Kozin LF, Hansen S (2013) Chemical properties of mercury. Mercury handbook: chemistry, applications and environmental impact. The Royal Society of Chemistry, CambridgeGoogle Scholar
  40. 40.
    Lafont D, Soulages OE, Acebal SG, Bonorino AG (2013) Sorption and desorption of mercury(II) in saline and alkaline soils of Bahía Blanca, Argentina. Environ Earth Sci 70:1379–1387CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Chemical Sciences DivisionSaha Institute of Nuclear PhysicsKolkataIndia
  2. 2.Department of PhysicsIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations