Skip to main content
Log in

PLGA encapsulation and radioiodination of indole-3-carbinol: investigation of anticancerogenic effects against MCF7, Caco2 and PC3 cells by in vitro assays

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Encapsulation with PLGA of I3C and radioiodination have been performed. Anticancerogenic effects of I3C and I3C-PLGA have been investigated utilizing in vitro methods on breast adenocarcinoma epithelial (MCF7), colon adenocarcinoma epithelial (Caco2), prostate carcinoma epithelial (PC3) cells. Characterization of I3C-PLGA have been performed with DLS method and SEM analysis. I3C and I3C-PLGA compounds have been radiolabeled in high yields with 131I which is widely used for diagnosis and treatment in Nuclear Medicine. All experimental results demonstrated that radioiodinated compounds are promising in order to be used in Nuclear Medicine as well as present study contributed previously reported studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Key TJ (2011) Fruit and vegetables and cancer risk. Br J Cancer 104:6–11

    Article  CAS  Google Scholar 

  2. Tavani A, La Vecchia C (1995) Fruit and vegetable consumption and cancer risk in a Mediterranean population. Am J Clin Nutr 61:1374S–1377S

    CAS  Google Scholar 

  3. Kristal AR, Lampe JW (2002) Brassica vegetables and prostate cancer risk: a review of the epidemiological evidence. Nutr Cancer 42:1–9

    Article  Google Scholar 

  4. Wang TTY, Milner MJ, Milner JA, Kim YS (2006) Estrogen receptor alpha as a target for indole-3-carbinol. J Nutr Biochem 17:659–664

    Article  CAS  Google Scholar 

  5. Talalay P, Fahey JW (2001) Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr 131:3027S–3033

    CAS  Google Scholar 

  6. Ciska E, Verkerk R, Honke J (2009) Effect of boiling on the content of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3′-diindolylmethane in fermented cabbage. J Agric Food Chem 57:2334–2338

    Article  CAS  Google Scholar 

  7. Shertzer HG, Senft AP (2000) The micronutrient indole-3-carbinol: implications for disease and chemoprevention. Drug Metabol Drug Interact 17:159–188

    Article  CAS  Google Scholar 

  8. Marconett CN, Singhal AK, Sundar SN, Firestone GL (2012) Indole-3-carbinol disrupts estrogen receptor-alpha dependent expression of insulin-like growth factor-1 receptor and insulin receptor substrate-1 and proliferation of human breast cancer cells. Mol Cell Endocrinol 363:74–84

    Article  CAS  Google Scholar 

  9. Lee S-Y, Song C-H, Xie Y-B et al (2014) SMILE upregulated by metformin inhibits the function of androgen receptor in prostate cancer cells. Cancer Lett 354:390–397

    Article  CAS  Google Scholar 

  10. Aggarwal BB, Ichikawa H (2005) Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle 4:1201–1215

    Article  CAS  Google Scholar 

  11. Kim DJ, Shin DH, Ahn B et al (2003) Chemoprevention of colon cancer by Korean food plant components. Mutat Res Mol Mech Mutagen 523–524:99–107

    Article  Google Scholar 

  12. Jeong JH, Kim J-J, Bak DH et al (2015) Protective Effects of Indole-3-Carbinol-Loaded Poly(lactic-co-glycolic acid) Nanoparticles Against Glutamate-Induced Neurotoxicity. J Nanosci Nanotechnol 15:7922–7928

    Article  CAS  Google Scholar 

  13. Moreno D, de Ilarduya CT, Bandrés E et al (2008) Characterization of cisplatin cytotoxicity delivered from PLGA-systems. Eur J Pharm Biopharm 68:503–512

    Article  CAS  Google Scholar 

  14. Danhier F, Ansorena E, Silva JM et al (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522

    Article  CAS  Google Scholar 

  15. Alibolandi M, Ramezani M, Sadeghi F et al (2015) Epithelial cell adhesion molecule aptamer conjugated PEG-PLGA nanopolymersomes for targeted delivery of doxorubicin to human breast adenocarcinoma cell line in vitro. Int J Pharm 479:241–251

    Article  CAS  Google Scholar 

  16. Biber Muftuler FZ, Yurt Kilcar A, Unak P (2015) A perspective on plant origin radiolabeled compounds, their biological affinities and interaction between plant extracts with radiopharmaceuticals. J Radioanal Nucl Chem 306:1–9

    Article  CAS  Google Scholar 

  17. Peltonen L, Koistinen P, Karjalainen M et al (2002) The effect of cosolvents on the formulation of nanoparticles from low-molecular-weight poly(l)lactide. AAPS PharmSciTech 3:E32. doi:10.1208/pt030432

    Article  Google Scholar 

  18. Anderton MJ, Jukes R, Lamb JH et al (2003) Liquid chromatographic assay for the simultaneous determination of indole-3-carbinol and its acid condensation products in plasma. J Chromatogr B 787:281–291

    Article  CAS  Google Scholar 

  19. Bell MC, Crowley-Nowick P, Bradlow HL et al (2000) Placebo-controlled trial of indole-3-carbinol in the treatment of CIN. Gynecol Oncol 78:123–129

    Article  CAS  Google Scholar 

  20. Nachshon-Kedmi M, Yannai S, Haj A, Fares FA (2003) Indole-3-carbinol and 3,3′-diindolylmethane induce apoptosis in human prostate cancer cells. Food Chem Toxicol 41:745–752

    Article  CAS  Google Scholar 

  21. Chinni SR, Li Y, Upadhyay S et al (2001) Indole-3-carbinol (I3C) induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene 20:2927–2936

    Article  CAS  Google Scholar 

  22. Pereira MA, Mosqueira VCF, Vilela JMC et al (2008) PLA-PEG nanocapsules radiolabeled with 99mTechnetium-HMPAO: release properties and physicochemical characterization by atomic force microscopy and photon correlation spectroscopy. Eur J Pharm Sci 33:42–51

    Article  CAS  Google Scholar 

  23. Mosqueira VC, Legrand P, Gulik A et al (2001) Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules. Biomaterials 22:2967–2979

    Article  CAS  Google Scholar 

  24. Unak P, Cetinkaya B (2005) Absorbed dose estimates at the cellular level for 131I. Appl Radiat Isot 62:861–869

    Article  CAS  Google Scholar 

  25. Fraker PJ, Speck JC (1978) Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril. Biochem Biophys Res Commun 80:849–857

    Article  CAS  Google Scholar 

  26. Schwochau K (2000) Technetium chemistry and radiopharmaceutical applications. Wiley-VCH, Winheim

    Google Scholar 

  27. Yoo HS, Lee KH, Oh JE, Park TG (2000) In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin–PLGA conjugates. J Control Release 68:419–431

    Article  CAS  Google Scholar 

  28. Brandi G, Paiardini M, Cervasi B et al (2003) A new indole-3-carbinol tetrameric derivative inhibits cyclin-dependent kinase 6 expression, and induces g1 cell cycle arrest in both estrogen-dependent and estrogen-independent breast cancer cell lines. Cancer Res 63:4028–4036

    CAS  Google Scholar 

  29. Fares FA, Ge X, Yannai S, Rennert G (1998) Dietary indole derivatives induce apoptosis in human breast cancer cells. Gene Ther Cancer. doi:10.1007/978-1-4615-5357-1

    Google Scholar 

  30. Li Y, Li X, Sarkar FH (2003) Gene expression profiles of i3c- and dim-treated pc3 human prostate cancer cells determined by cdna microarray analysis. J Nutr 133:1011–1019

    CAS  Google Scholar 

  31. Bonnesen C, Eggleston IM, Hayes JD (2001) Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against dna damage in human colon cell lines. Cancer Res 61:6120–6130

    CAS  Google Scholar 

  32. Grubbs CJ, Steele VE, Casebolt T et al (1995) Chemoprevention of chemically-induced mammary carcinogenesis by indole-3-carbinol. Anticancer Res 15:709–716

    CAS  Google Scholar 

  33. Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236

    Article  CAS  Google Scholar 

  34. Wargovich MJ, Chen CD, Jimenez A et al (1996) Aberrant crypts as a biomarker for colon cancer: evaluation of potential chemopreventive agents in the rat. Cancer Epidemiol Biomark Prev 5:355–360

    CAS  Google Scholar 

  35. Morse MA, LaGreca SD, Amin SG, Chung FL (1990) Effects of indole-3-carbinol on lung tumorigenesis and DNA methylation induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and on the metabolism and disposition of NNK in A/J mice. Cancer Res 50:2613–2617

    CAS  Google Scholar 

  36. Dashwood RH, Arbogast DN, Fong AT et al (1988) Mechanisms of anti-carcinogenesis by indole-3-carbinol: detailed in vivo DNA binding dose-response studies after dietary administration with aflatoxin B1. Carcinogenesis 9:427–432

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Current work is supported by Ege University Research Fund (Contract No 2014 NBE 003). The authors thank to Gökhan Takan for the technical assistance for graphing the particle size distribution of I3C-PLGA according to frequency of particles using GraphPad program (prism 2.01 V).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Zumrut Biber Muftuler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, G., Yurt Kilcar, A., Medine, E.I. et al. PLGA encapsulation and radioiodination of indole-3-carbinol: investigation of anticancerogenic effects against MCF7, Caco2 and PC3 cells by in vitro assays. J Radioanal Nucl Chem 311, 1043–1052 (2017). https://doi.org/10.1007/s10967-016-4929-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4929-8

Keywords

Navigation