Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 311, Issue 2, pp 1043–1052 | Cite as

PLGA encapsulation and radioiodination of indole-3-carbinol: investigation of anticancerogenic effects against MCF7, Caco2 and PC3 cells by in vitro assays

  • Gorkem Yildiz
  • Ayfer Yurt Kilcar
  • E. Ilker Medine
  • Volkan Tekin
  • Ozge Kozgus Guldu
  • F. Zumrut Biber Muftuler
Article
  • 133 Downloads

Abstract

Encapsulation with PLGA of I3C and radioiodination have been performed. Anticancerogenic effects of I3C and I3C-PLGA have been investigated utilizing in vitro methods on breast adenocarcinoma epithelial (MCF7), colon adenocarcinoma epithelial (Caco2), prostate carcinoma epithelial (PC3) cells. Characterization of I3C-PLGA have been performed with DLS method and SEM analysis. I3C and I3C-PLGA compounds have been radiolabeled in high yields with 131I which is widely used for diagnosis and treatment in Nuclear Medicine. All experimental results demonstrated that radioiodinated compounds are promising in order to be used in Nuclear Medicine as well as present study contributed previously reported studies.

Keywords

Indole-3-Carbinol (I3C) Encapsulation Radioiodination MCF7 Caco2 PC3 

Notes

Acknowledgments

Current work is supported by Ege University Research Fund (Contract No 2014 NBE 003). The authors thank to Gökhan Takan for the technical assistance for graphing the particle size distribution of I3C-PLGA according to frequency of particles using GraphPad program (prism 2.01 V).

References

  1. 1.
    Key TJ (2011) Fruit and vegetables and cancer risk. Br J Cancer 104:6–11CrossRefGoogle Scholar
  2. 2.
    Tavani A, La Vecchia C (1995) Fruit and vegetable consumption and cancer risk in a Mediterranean population. Am J Clin Nutr 61:1374S–1377SGoogle Scholar
  3. 3.
    Kristal AR, Lampe JW (2002) Brassica vegetables and prostate cancer risk: a review of the epidemiological evidence. Nutr Cancer 42:1–9CrossRefGoogle Scholar
  4. 4.
    Wang TTY, Milner MJ, Milner JA, Kim YS (2006) Estrogen receptor alpha as a target for indole-3-carbinol. J Nutr Biochem 17:659–664CrossRefGoogle Scholar
  5. 5.
    Talalay P, Fahey JW (2001) Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr 131:3027S–3033Google Scholar
  6. 6.
    Ciska E, Verkerk R, Honke J (2009) Effect of boiling on the content of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3′-diindolylmethane in fermented cabbage. J Agric Food Chem 57:2334–2338CrossRefGoogle Scholar
  7. 7.
    Shertzer HG, Senft AP (2000) The micronutrient indole-3-carbinol: implications for disease and chemoprevention. Drug Metabol Drug Interact 17:159–188CrossRefGoogle Scholar
  8. 8.
    Marconett CN, Singhal AK, Sundar SN, Firestone GL (2012) Indole-3-carbinol disrupts estrogen receptor-alpha dependent expression of insulin-like growth factor-1 receptor and insulin receptor substrate-1 and proliferation of human breast cancer cells. Mol Cell Endocrinol 363:74–84CrossRefGoogle Scholar
  9. 9.
    Lee S-Y, Song C-H, Xie Y-B et al (2014) SMILE upregulated by metformin inhibits the function of androgen receptor in prostate cancer cells. Cancer Lett 354:390–397CrossRefGoogle Scholar
  10. 10.
    Aggarwal BB, Ichikawa H (2005) Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle 4:1201–1215CrossRefGoogle Scholar
  11. 11.
    Kim DJ, Shin DH, Ahn B et al (2003) Chemoprevention of colon cancer by Korean food plant components. Mutat Res Mol Mech Mutagen 523–524:99–107CrossRefGoogle Scholar
  12. 12.
    Jeong JH, Kim J-J, Bak DH et al (2015) Protective Effects of Indole-3-Carbinol-Loaded Poly(lactic-co-glycolic acid) Nanoparticles Against Glutamate-Induced Neurotoxicity. J Nanosci Nanotechnol 15:7922–7928CrossRefGoogle Scholar
  13. 13.
    Moreno D, de Ilarduya CT, Bandrés E et al (2008) Characterization of cisplatin cytotoxicity delivered from PLGA-systems. Eur J Pharm Biopharm 68:503–512CrossRefGoogle Scholar
  14. 14.
    Danhier F, Ansorena E, Silva JM et al (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522CrossRefGoogle Scholar
  15. 15.
    Alibolandi M, Ramezani M, Sadeghi F et al (2015) Epithelial cell adhesion molecule aptamer conjugated PEG-PLGA nanopolymersomes for targeted delivery of doxorubicin to human breast adenocarcinoma cell line in vitro. Int J Pharm 479:241–251CrossRefGoogle Scholar
  16. 16.
    Biber Muftuler FZ, Yurt Kilcar A, Unak P (2015) A perspective on plant origin radiolabeled compounds, their biological affinities and interaction between plant extracts with radiopharmaceuticals. J Radioanal Nucl Chem 306:1–9CrossRefGoogle Scholar
  17. 17.
    Peltonen L, Koistinen P, Karjalainen M et al (2002) The effect of cosolvents on the formulation of nanoparticles from low-molecular-weight poly(l)lactide. AAPS PharmSciTech 3:E32. doi: 10.1208/pt030432 CrossRefGoogle Scholar
  18. 18.
    Anderton MJ, Jukes R, Lamb JH et al (2003) Liquid chromatographic assay for the simultaneous determination of indole-3-carbinol and its acid condensation products in plasma. J Chromatogr B 787:281–291CrossRefGoogle Scholar
  19. 19.
    Bell MC, Crowley-Nowick P, Bradlow HL et al (2000) Placebo-controlled trial of indole-3-carbinol in the treatment of CIN. Gynecol Oncol 78:123–129CrossRefGoogle Scholar
  20. 20.
    Nachshon-Kedmi M, Yannai S, Haj A, Fares FA (2003) Indole-3-carbinol and 3,3′-diindolylmethane induce apoptosis in human prostate cancer cells. Food Chem Toxicol 41:745–752CrossRefGoogle Scholar
  21. 21.
    Chinni SR, Li Y, Upadhyay S et al (2001) Indole-3-carbinol (I3C) induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene 20:2927–2936CrossRefGoogle Scholar
  22. 22.
    Pereira MA, Mosqueira VCF, Vilela JMC et al (2008) PLA-PEG nanocapsules radiolabeled with 99mTechnetium-HMPAO: release properties and physicochemical characterization by atomic force microscopy and photon correlation spectroscopy. Eur J Pharm Sci 33:42–51CrossRefGoogle Scholar
  23. 23.
    Mosqueira VC, Legrand P, Gulik A et al (2001) Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules. Biomaterials 22:2967–2979CrossRefGoogle Scholar
  24. 24.
    Unak P, Cetinkaya B (2005) Absorbed dose estimates at the cellular level for 131I. Appl Radiat Isot 62:861–869CrossRefGoogle Scholar
  25. 25.
    Fraker PJ, Speck JC (1978) Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril. Biochem Biophys Res Commun 80:849–857CrossRefGoogle Scholar
  26. 26.
    Schwochau K (2000) Technetium chemistry and radiopharmaceutical applications. Wiley-VCH, WinheimGoogle Scholar
  27. 27.
    Yoo HS, Lee KH, Oh JE, Park TG (2000) In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin–PLGA conjugates. J Control Release 68:419–431CrossRefGoogle Scholar
  28. 28.
    Brandi G, Paiardini M, Cervasi B et al (2003) A new indole-3-carbinol tetrameric derivative inhibits cyclin-dependent kinase 6 expression, and induces g1 cell cycle arrest in both estrogen-dependent and estrogen-independent breast cancer cell lines. Cancer Res 63:4028–4036Google Scholar
  29. 29.
    Fares FA, Ge X, Yannai S, Rennert G (1998) Dietary indole derivatives induce apoptosis in human breast cancer cells. Gene Ther Cancer. doi: 10.1007/978-1-4615-5357-1 Google Scholar
  30. 30.
    Li Y, Li X, Sarkar FH (2003) Gene expression profiles of i3c- and dim-treated pc3 human prostate cancer cells determined by cdna microarray analysis. J Nutr 133:1011–1019Google Scholar
  31. 31.
    Bonnesen C, Eggleston IM, Hayes JD (2001) Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against dna damage in human colon cell lines. Cancer Res 61:6120–6130Google Scholar
  32. 32.
    Grubbs CJ, Steele VE, Casebolt T et al (1995) Chemoprevention of chemically-induced mammary carcinogenesis by indole-3-carbinol. Anticancer Res 15:709–716Google Scholar
  33. 33.
    Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236CrossRefGoogle Scholar
  34. 34.
    Wargovich MJ, Chen CD, Jimenez A et al (1996) Aberrant crypts as a biomarker for colon cancer: evaluation of potential chemopreventive agents in the rat. Cancer Epidemiol Biomark Prev 5:355–360Google Scholar
  35. 35.
    Morse MA, LaGreca SD, Amin SG, Chung FL (1990) Effects of indole-3-carbinol on lung tumorigenesis and DNA methylation induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and on the metabolism and disposition of NNK in A/J mice. Cancer Res 50:2613–2617Google Scholar
  36. 36.
    Dashwood RH, Arbogast DN, Fong AT et al (1988) Mechanisms of anti-carcinogenesis by indole-3-carbinol: detailed in vivo DNA binding dose-response studies after dietary administration with aflatoxin B1. Carcinogenesis 9:427–432CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Gorkem Yildiz
    • 1
  • Ayfer Yurt Kilcar
    • 1
  • E. Ilker Medine
    • 1
  • Volkan Tekin
    • 1
  • Ozge Kozgus Guldu
    • 1
  • F. Zumrut Biber Muftuler
    • 1
  1. 1.Institute of Nuclear ScienceEge UniversityIzmirTurkey

Personalised recommendations