Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 311, Issue 1, pp 179–187 | Cite as

Chromatographic separation of thulium from erbium for neutron capture cross section measurements—Part I: Trace scale optimization of ion chromatography method with various complexing agents

  • N. Gharibyan
  • B. J. Bene
  • R. Sudowe
Article

Abstract

The impact of various ion chromatography parameters on the separation of trace amounts of thulium from erbium was examined to address the need for the preparation of a 171Tm target for neutron capture cross section measurements. The following optimal operation parameters for analytical scale separations with cation exchange resin were established based on a modified separation resolution: 0.046 M α-HIB as eluent with a flow rate of 1.2 mL min−1 at 25 °C. Different carboxylic acids with varying pH were also investigated, which reaffirmed the use of α-hydroxyisobutyrate as the most suitable complexant for the separation of these neighboring lanthanides.

Keywords

Thulium Erbium Ion chromatography separation Hydroxyisobutyric acid 

Notes

Acknowledgments

The authors would like to thank David Vieira, Todd Bredeweg and Mary Turner for their support. This work was funded by the National Nuclear Security Administration Stewardship Science Academic Alliances Program under grant DEFG52-10NA29658.

References

  1. 1.
    Jandel M, Bredeweg TA, Bond EM, Chadwick MB, Clement RR, Couture A, O’Donnell JM, Haight RC, Kawano T, Reifarth R, Rundberg RS, Ullmann JL, Vieira DJ, Wilhelmy JB, Wouters JM, Agvaanluvsan U, Parker WE, Wu CY, Becker JA (2008) Neutron capture cross section of 241Am. Phys Rev C 78:034609-1–034615-15Google Scholar
  2. 2.
    Taylor WA, Rundberg RS, Bond EM, Nortier FM, Vieira DJ (2009) Production of a 173Lu target for neutron capture cross section measurements. J Radioanal Nucl Chem 282:391–394CrossRefGoogle Scholar
  3. 3.
    Wisshak K, Voss F, Kappeler F, Kazakov L (1997) Neutron capture in neodymium isotopes: implications for the s-process. Nucl Phys A 621:270–273CrossRefGoogle Scholar
  4. 4.
    Reifarth R (2006) Stardust and the secrets of heavy-element production. Los Alamos Sci 30:70–77Google Scholar
  5. 5.
    Schwantes JM, Rundberg RS, Taylor WA, Vieira DJ (2006) Rapid, high-purity, lanthanide separations using HPLC. J Alloy Compd 418:189–194CrossRefGoogle Scholar
  6. 6.
    Reifarth R, Esch EI, Alpizar-Vicente A, Bond EM, Bredeweg TA, Glover SE, Greife U, Hatarik R, Haight RC, Kronenberg A, O’Donnell JM, Rundberg RS, Schwantes JM, Ullmann JL, Vieira DJ, Wilhelmy JB, Wouters JM (2005) (n, g) measurements on radioactive isotopes with DANCE. Nucl Instrum Method B 241:176–179CrossRefGoogle Scholar
  7. 7.
    Nash KL, Jensen MP (2001) Analytical-scale separations of the lanthanides: a review of techniques and fundamentals. Sep Sci Technol 36:1257–1282CrossRefGoogle Scholar
  8. 8.
    Robards K, Clarke S, Patsalides E (1988) Advances in the analytical chromatography of the lanthanides: a review. Analyst 113:1757–1779CrossRefGoogle Scholar
  9. 9.
    Kumar M (1994) Recent trends in chromatographic procedures for separation and determination of rare earth elements: a review. Analyst 119:2013–2024CrossRefGoogle Scholar
  10. 10.
    Sarzanini C (1999) Liquid chromatography: a tool for the analysis of metal species. J Chromatogr A 850:213–228CrossRefGoogle Scholar
  11. 11.
    Choppin GR, Silva RJ (1956) Separation of the lanthanides by ion exchange with alpha-hydroxy isobutyric acid. J Inorg Nucl Chem 3:153–154CrossRefGoogle Scholar
  12. 12.
    Clark ME, Bear JL (1970) Metal ion complex formation in non-aqueous solvents: formation constants of Cu(II) and Yb(III) isobutyrate and α-hydroxyisobutyrate. J Inorg Nucl Chem 32:3569–3574CrossRefGoogle Scholar
  13. 13.
    Sisson DH, Mode VA, Campbell DO (1972) High-speed separation of the rare earths by ion exchange part II. J Chromatogr A 66:129–135CrossRefGoogle Scholar
  14. 14.
    Campbell DO (1973) Rapid rare earth separation by pressurized ion exchange chromatography. J Inorg Nucl Chem 35:3911–3919CrossRefGoogle Scholar
  15. 15.
    Karol PJ (1973) Rare earth separations using cation-exchange column chromatography: comparison of α-hydroxyisobutyric acid and α-hydroxy-α-methylbutyric acid as eluants. J Chromatogr A 79:287–291CrossRefGoogle Scholar
  16. 16.
    Elchuk S, Cassidy RM (1979) Separation of the lanthanides on high-efficiency bonded phases and conventional ion-exchange resins. Anal Chem 51:1434–1438CrossRefGoogle Scholar
  17. 17.
    Hwang JM, Shih JS, Yeh YC, Wu SC (1981) Determination of rare earths in monazite sand and rare-earth impurities in high-purity rare-earth oxides by high-performance liquid chromatography. Analyst 106:869–873CrossRefGoogle Scholar
  18. 18.
    Mazzucotelli A, Dadone A, Frache R, Baffi F (1985) Determination of trace amounts of lanthanides in rocks and minerals by high-performance liquid chromatography. J Chromatogr A 349:137–142CrossRefGoogle Scholar
  19. 19.
    Tielrooy JA, Kraak JC, Maessen FJMJ (1985) High-performance liquid chromatography with post-column reaction detection for the determination of rare-earth elements in phosphoric acids produced for the manufacture of phosphate fertilizers. Anal Chim Acta 176:161–174CrossRefGoogle Scholar
  20. 20.
    Dionex Technical Note #23: Ion chromatography of lanthanide metals (1991). http://www.dionex.com/en-us/webdocs/4417-TN23_LPN032889-01.pdf. Accessed 17 Apr 2016
  21. 21.
    Nuryono Huber CG, Kleboth K (1998) Ion-exchange chromatography with an oxalic acid-α-hydroxyisobutyric acid eluent for the separation and quantification of rare-earth elements in monazite and xenotime. Chromatography 48:407–414CrossRefGoogle Scholar
  22. 22.
    Shuheng Y, Fa L, Hongdi Z, Xueliang L, Shulan Z (1988) Applications of pressurized cation exchange chromatography for fission yield determination. J Radioanal Nucl Chem 124:187–195CrossRefGoogle Scholar
  23. 23.
    Sivaraman N, Kumar R, Subramaniam S, Vasudeva Rao PR (2002) Separation of lanthanides using ion-interaction chromatography with HDEHP coated columns. J Radioanal Nucl Chem 252:491–495CrossRefGoogle Scholar
  24. 24.
    Miller GG, Rogers PZ, Palmer P, Dry D, Rundberg R, Fowler M, Wilhelmy J (2005) Preparation of radioactive rare earth targets for neutron capture study. J Radioanal Nucl Chem 263:527–530CrossRefGoogle Scholar
  25. 25.
    Schwantes JM, Taylor WA, Rundberg RS, Vieira DJ (2008) Preparation of a one-curie 171Tm target for the detector for advanced neutron capture experiments (DANCE). J Radioanal Nucl Chem 276:533–542CrossRefGoogle Scholar
  26. 26.
    Pourjavid MR, Norouzi P, Ganjali MR, Nemati A, Zamani HA, Javaheri M (2009) Separation and determination of medium lanthanides: a new experiment with use of ion-exchange separation and fast fourier transform continuous cyclic voltammetry. Int J Electrochem Sci 4:1650–1671Google Scholar
  27. 27.
    Jaison PG, Kumar P, Telmore VM, Aggarwal SK (2009) Comparative study of ion interaction reagents for the separation of lanthanides by reversed-phase high performance liquid chromatography (RP-HPLC). J Liq Chromatogr Rel Technol 32:2146–2163CrossRefGoogle Scholar
  28. 28.
    Datta A, Sivaraman N, Srinivasan TG, Rao Vasudeva (2010) Rapid separation of lanthanides and actinides on small particle based reverse phase supports. Radiochim Acta 98:277–285CrossRefGoogle Scholar
  29. 29.
    Mayer SW, Freiling EC (1953) Ion exchange as a separation method. VI. Column studies of the relative efficiencies of various complexing agents for the separation of lighter rare earths. J Am Chem Soc 75:5647–5649CrossRefGoogle Scholar
  30. 30.
    Vobecky M (1989) Chromatographic separation of the heavier lanthanoids on the spherical cation exchanger OSTION with α-hydroxy-α-methylbutyrate. J Chromatogr A 478:446–448Google Scholar
  31. 31.
    Raut NM, Jaison PG, Aggarwal SK (2002) Comparative evaluation of three α-hydroxycarboxylic acids for the separation of lanthanides by dynamically modified reversed-phase high-performance liquid chromatography. J Chromatogr A 959:163–172CrossRefGoogle Scholar
  32. 32.
    Sickafoose JP (1971) Inorganic separation and analysis by high speed liquid chromatography. Retrospective Theses and Dissertations. Paper 4584. http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=5583&context=rtd. Accessed 17 April 2016
  33. 33.
    Bene BJ, Taylor WA, Birnbaum ER, Sudowe R (2016) Chromatographic separation of thulium from erbium for neutron capture cross section measurements—part II: preparative scale separation. J Radioanal Nucl Chem. doi:  10.1007/s10967-016-4889-z Google Scholar
  34. 34.
    Co AC, Ko AN, Ye L, Lucy CA (1997) Modification of 4-(2-pyridylazo)-resorcinol postcolumn reagent selectivity through competitive equilibria with chelating ligands. J Chromatogr A 770:69–74CrossRefGoogle Scholar
  35. 35.
    Portanova R, Lajunen LHJ, Tolazzi M, Piispanen J (2003) Critical evaluation of stability constants for α-hydroxycarboxylic acid complexes with protons and metal ions and the accompanying enthalpy changes. Part II. Aliphatic 2-hydroxycarboxylic acids. Pure Appl Chem 75:495–540CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Radiochemistry ProgramUniversity of NevadaLas VegasUSA
  2. 2.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations