Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 311, Issue 2, pp 973–981 | Cite as

Wastewater treatment with ionizing radiation

  • László Wojnárovits
  • Erzsébet Takács
Article

Abstract

In water treatment by ionizing radiation ·OH is suggested to initiate the degradation of organics. In these reactions mostly carbon centred radicals form. Here we show that other inorganic radicals also highly contribute to the initiation of degradation. Cl and HCO3 in the treated water reacting with ·OH transform to Cl 2 ·− and CO 3 ·− . In their reactions C-centred radicals form, too. The reactions of e aq and H· water radiolysis intermediates may also produce carbon centred radicals. The C-centred radicals react readily with dissolved O2, this is the starting step of the gradual oxidation.

Keywords

Water purification Advanced oxidation processes Hydroxyl radical Water radiolysis Pollutant degradation 

Notes

Acknowledgments

The authors thank Hungarian Science Foundation (OTKA, NK 105802) and International Atomic Energy Agency (Contract No. 16485) for support.

References

  1. 1.
    Getoff N (1997) Peroxyl radicals in the treatment of waste solutions. In: Alfassi ZB (ed) Peroxyl radicals. Wiley, New York, pp 483–506Google Scholar
  2. 2.
    Stefan M (2016) Advanced oxidation processes for water and wastewater treatment. IWA Publishing, LondonGoogle Scholar
  3. 3.
    IAEA (2007) Radiation processing, environmental applications. International Atomic Energy Agency, ViennaGoogle Scholar
  4. 4.
    Wojnárovits L, Takács E, Szabó L (2016) Gamma-ray and electron beam-based AOPs. In: Stefan M (ed) Advanced oxidation processes for water and wastewater treatment, vol 6. IWA Publishing, LondonGoogle Scholar
  5. 5.
    Woods RJ, Pikaev AK (1994) Applied radiation chemistry: radiation processing. Wiley, New YorkGoogle Scholar
  6. 6.
    Wardman P (1989) Reduction potentials of one-electron couples involving free radicals in aqueous solution. J Phys Chem Ref Data 18:1637–1755CrossRefGoogle Scholar
  7. 7.
    Mostofa KMG, Liu C-Q, Mottaleb MA, Wan G, Ogawa H, Vione D, Yoshioka T, Wu F (2013) Dissolved organic matter in natural waters. In: Mostofa KMG, Yoshioka T, Mottaleb MA, Vione D (eds) Photobiogeochemistry of organic matter. Environmental science and engineering. Springer, Berlin, pp 1–137CrossRefGoogle Scholar
  8. 8.
    Westerhoff P, Mezyk SP, Cooper WJ, Minakata D (2007) Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee River fulvic acid and other dissolved organic matter isolates. Environ Sci Technol 41:4640–4646CrossRefGoogle Scholar
  9. 9.
    Wojnárovits L, Takács E (2013) Structure dependence of the rate coefficients of hydroxyl radical + aromatic molecule reaction. Radiat Phys Chem 87:82–87CrossRefGoogle Scholar
  10. 10.
    Swallow AJ (1973) Radiation chemistry: an introduction. Longman, LondonGoogle Scholar
  11. 11.
    Rickman KA, Mezyk SP (2010) Kinetics and mechanism of sulfate radical oxidation of β-lactam antibiotics in water. Chemosphere 81:359–365CrossRefGoogle Scholar
  12. 12.
    Kazmierczak L, Szala-Bilnik J, Wolszczak M, Swiatla-Wojcik D (2015) Temperature dependence of rate constants for hydrogen atom reaction with Cl2·− in water by pulse radiolysis of aqueous HCl solution. Radiat Phys Chem 117:7–11CrossRefGoogle Scholar
  13. 13.
    Buxton G, Greenstock CL, Helman, WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution. J Phys Chem Ref Data 17:513–886. http://kinetics.nist.gov/solution/. Accessed 13 Feb 2016
  14. 14.
    Neta P, Hiue RE, Ross AB (1988) Rate constants of inorganic radicals in aqueous solution. J Phys Chem Ref Data 17:1027–1284CrossRefGoogle Scholar
  15. 15.
    Madden KP, Mezyk SP (2011) Critical review of aqueous solution reaction rate constants for hydrogen atoms. J Phys Chem Ref Data 40:1–43CrossRefGoogle Scholar
  16. 16.
    Lutze H (2013) Sulfate radical based oxidation in water treatment. Dissertation Dr. rer. nat. Duisburg-Essen. https://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-35021/Lutze_Diss.pdf. Accessed 13 Feb 2016
  17. 17.
    Criquet J, Leitner NKV (2015) Reaction pathway of the degradation of the p-hydroxybenzoic acid by sulfate radical generated by ionizing radiations. Radiat Phys Chem 106:307–314CrossRefGoogle Scholar
  18. 18.
    von Sonntag C (2006) Free-radical-induced DNA damage and its repair. A chemical perspective. Springer, HeidelbergCrossRefGoogle Scholar
  19. 19.
    Steenken S (1987) Addition-elimination paths in electron-transfer reactions between radicals and molecules. Oxidation of organic molecules by OH radical. J Chem Soc Faraday Trans 1(83):113–124CrossRefGoogle Scholar
  20. 20.
    Ziajka J, Pasiuk-Bronikowska W (2005) Rate constants for atmospheric trace organics scavenging SO4·− in the Fe-catalysed autoxidation of S(IV). Atmos Environ 39:1431–1438CrossRefGoogle Scholar
  21. 21.
    Choure SC, Bamatraf MMM, Rao BSM, Das R, Mohan H, Mittal JP (1997) Hydroxylation of chlorotoluenes and cresols: a pulse radiolysis, laser flash photolysis, and product analysis study. J Phys Chem A 101:9837–9845CrossRefGoogle Scholar
  22. 22.
    Roder M, Földiák G, Wojnárovits L (1999) Electron transfer from cresols to N3·, BrO2·, ClO2·, NO2· and SO4·− radicals: correlation between rate constants and one-electron reduction potentials. Radiat Phys Chem 55:515–519CrossRefGoogle Scholar
  23. 23.
    Neta P, Madhavan V, Zemel H, Fessenden RW (1977) Rate constants and mechanism of reaction of SO4·− with aromatic compounds. J Am Chem Soc 99:163–164CrossRefGoogle Scholar
  24. 24.
    Canle Lopez M, Rodríguez S, Rodríguez Vazques LF, Santaballa JA, Steenken S (2001) First stages of photodegradation of the urea herbicides Fenuron, Monuron and Diuron. J Mol Struct 565–566:133–139CrossRefGoogle Scholar
  25. 25.
    Canle Lopez M, Fernandez MI, Rodríguez S, Santaballa JA, Steenken S, Vulliet E (2005) Mechanisms of direct and TiO2-photocatalised UV degradation of phenylurea herbicides. Chem Phys Phys Chem 6:2064–2074Google Scholar
  26. 26.
    Asmus KD (1979) Stabilization of oxidized sulfur centers in organic sulfides. Radical cations and odd-electron sulfur-sulfur bonds. Acc Chem Res 12:436–442CrossRefGoogle Scholar
  27. 27.
    Szabó L, Tóth T, Takács E, Wojnárovits L (2016) One-electron oxidation of molecules with aromatic and thioether functions: Cl2·−/Br2·− and OH induced oxidation of penicillins studied by pulse radiolysis. J Photochem Photobiol 326:50–59CrossRefGoogle Scholar
  28. 28.
    Hasegawa K, Neta P (1978) Rate constants and mechanisms of reaction of Cl2·−. J Phys Chem 82:854–857CrossRefGoogle Scholar
  29. 29.
    O’Neil P, Steenken S, Schulte-Frohlinde P (1975) Formation of radical cations of methoxylated benzenes by reaction with OH radicals, Tl2+, Ag2+ and SO4·− in aqueous solution. An optical and conductometric pulse radiolysis and in situ radiolysis electron spin resonance study. J Phys Chem 79:2773–2779CrossRefGoogle Scholar
  30. 30.
    Paul J, Naik DB, Bhardwaj YK, Varshney L (2014) Studies on oxidative radiolysis of ibuprofen in presence of potassium persulfate. Radiat Phys Chem 100:38–44CrossRefGoogle Scholar
  31. 31.
    Bíró Á, Takács E, Wojnárovits L (1996) Rate constants for the reaction of hydrated electrons and hydroxyl radicals with acrylate monomers. Macromol Rapid Commun 17:353–357CrossRefGoogle Scholar
  32. 32.
    Elliot AJ, McCracken DR, Buxton GV, Wood ND (1990) Estimation of rate constants for near-diffusion-controlled reactions in water at high temperatures. J Chem Soc Faraday Trans 86:1539–1547CrossRefGoogle Scholar
  33. 33.
    Ashton L, Buxton GV, Stuart CR (1995) Temperature dependence of the rate of reaction of OH with some aromatic compounds in aqueous solution. Evidence for the formation of a π-complex intermediate? J Chem Soc Faraday Trans 91:1631–1633CrossRefGoogle Scholar
  34. 34.
    Wojnárovits L, Takács E (2014) Rate coefficients of hydroxyl radical reactions with pesticide molecules and related compounds: a review. Radiat Phys Chem 96:120–134CrossRefGoogle Scholar
  35. 35.
    Albarran G, Schuler RH (2005) Concerted effects of substituents in the reaction of OH radicals with aromatics: the cresols. J Phys Chem A 109:9363–9370CrossRefGoogle Scholar
  36. 36.
    Albarran G, Schuler RH (2007) Hydroxyl radical as a probe of the charge distribution in aromatics: phenol. J Phys Chem A 111:2507–2510CrossRefGoogle Scholar
  37. 37.
    Albarran G, Mendoza E, Schuler RH (2016) Concerted effects of substituents in the reaction of ·OH radicals with aromatics: the hydroxybenzaldehydes. Radiat Phys Chem 124:46–51CrossRefGoogle Scholar
  38. 38.
    Schuler RH, Albarran G (2002) The rate constants for reaction of OH radicals with benzene and toluene. Radiat Phys Chem 64:189–195CrossRefGoogle Scholar
  39. 39.
    Land EJ, Ebert M (1967) Pulse radiolysis studies of aqueous phenol. Water elimination from dihydroxycyclohexadienyl radicals to form phenoxyl. Trans Faraday Soc 63:1181–1190CrossRefGoogle Scholar
  40. 40.
    Wojnárovits L, Földiák G, D’Angelantonio M, Emmi SS (2002) Mechanism of OH radical-induced oxidation of p-cresol to p-methylphenoxyl radical. Res Chem Intermediat 28:373–386CrossRefGoogle Scholar
  41. 41.
    Chen S-N, Hoffman M, Parsons GH Jr (1975) Reactivity of the carbonate radical toward aromatic compounds in aqueous solution. J Phys Chem 79:1911–1912CrossRefGoogle Scholar
  42. 42.
    Moore JS, Phillips GO, Sosnowski A (1977) Reaction of the carbonate radical anion with substituted phenols. Int J Radiat Biol Relat Stud Phys Chem Med 31:603–605CrossRefGoogle Scholar
  43. 43.
    Huie RE, Shoute LCT, Neta P (1991) Temperature dependence of the rate constants for reactions of the carbonate radical with organic and inorganic reductants. Int J Chem Kinet 23:541–552CrossRefGoogle Scholar
  44. 44.
    Augusto O, Bonini MG, Amanso AM, Linares E, Santos CCX, De Menezes SL (2002) Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology. Free Radical Biol Med 32:841–859CrossRefGoogle Scholar
  45. 45.
    Chen SN, Hoffman MZ (1973) Rate constants for the reaction of the carbonate radical with compounds of biochemical interest in neutral aqueous solution. Radiat Res 56:40–47CrossRefGoogle Scholar
  46. 46.
    Huang J (2000) Carbonate radical in natural waters, PhD thesis, University of Toronto, Toronto. https://tspace.library.utoronto.ca/bitstream/1807/14631/1/NQ50045.pdf. Accessed 13 Feb 2016
  47. 47.
    Steenken S, O’Neill P, Schulte-Frohlinde D (1977) Formation of radical zwitterions from methoxylated benzoic acids. 1. One electron oxidation by TI2+, Ag2+, and SO4·−. J Phys Chem 81:26–30CrossRefGoogle Scholar
  48. 48.
    Sharma SB, Mudaliar M, Rao BSM, Mohan H, Mittal JP (1997) Radiation chemical oxidation of benzaldehyde, acetophenone and benzophenone. J Phys Chem A 101:8402–8408CrossRefGoogle Scholar
  49. 49.
    Jacobi H-W, Wicktor F, Herrmann H, Zellner R (1999) A laser flash photolysis kinetic study of reactions of the Cl2 radical anion with oxygenated hydrocarbons in aqueous solution. Int J Chem Kinet 31:159–181CrossRefGoogle Scholar
  50. 50.
    Clifton CL, Huie RE (1993) Rate constants for some hydrogen abstraction reactions of the carbonate radical. Int J Chem Kinet 25:199–203CrossRefGoogle Scholar
  51. 51.
    Buxton GV (2008) An overview of the radiation chemistry of liquids. In: Spotheim-Maurizot M, Mostafavi M, Douki T, Belloni J (eds) Radiation chemistry: From basics to applications in material and life sciences. EDP Sciences, Les Ulis, pp 3–16Google Scholar
  52. 52.
    Bielski BHJ, Cabelli DE, Arudi RL, Ross AB (1985) Reactivity of HO2/O2 radicals in aqueous solution. J Phys Chem Ref Data 14:1041–1100CrossRefGoogle Scholar
  53. 53.
    Cooper WJ, Cramer CJ, Martin NH, Mezyk SP, O’Shea KE, von Sonntag C (2009) Free radical mechanism for the treatment of methyl tert-butsyl ether (MTBE) via advanced oxidation/reductive processes in aqueous solutions. Chem Rev 109:1302–1345CrossRefGoogle Scholar
  54. 54.
    Marchaj A, Kelley DG, Bakac A, Espenson JH (1991) Kinetics of the reactions between alkyl radicals and molecular oxygen in aqueous solution. J Phys Chem 95:4440–4441CrossRefGoogle Scholar
  55. 55.
    Rabani J, Klug-Roth D, Henglein A (1974) Pulse radiolytic investigations of OHCH2O2 radicals. J Phys Chem 78:2089–2093CrossRefGoogle Scholar
  56. 56.
    Adams GE, Willson RL (1969) Pulse radiolysis studies on the oxidation of organic radicals in aqueous solution. Trans Faraday Soc 65:2981–2987CrossRefGoogle Scholar
  57. 57.
    Fang X, Pan X, Rahmann A, Schuchmann H-P, von Sonntag C (1995) Reversibility in the reaction of cyclohexadienyl radicals with oxygen in aqueous solution. Chem Eur J 1:423–429CrossRefGoogle Scholar
  58. 58.
    von Sonntag C, Schuchmann H-P (1997) Peroxyl radicals in aqueous solution. In: Alfassi ZB (ed) Peroxyl radicals. Wiley, New York, pp 173–274Google Scholar
  59. 59.
    von Sonntag C, Schuchmann H-P (2001) The chemistry behind the application of ionizing radiation in water-pollution abatement. In: Jonah CD, Rao BSM (eds) Radiation chemistry: present status and future trends. Studies in physical and theoretical chemistry 87. Elsevier, Amsterdam, pp 657–670Google Scholar
  60. 60.
    Kim Y, Kim J, Han B (2011) Application of an electron accelerator for the treatment of wastewater from textile dyeing industries. J Korean Phys Soc 59:3489–3493CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Institute for Energy Security and Environmental Safety Centre for Energy ResearchHungarian Academy of SciencesBudapestHungary

Personalised recommendations