Journal of Radioanalytical and Nuclear Chemistry

, Volume 310, Issue 2, pp 857–863 | Cite as

Appropriate quenching level in modified integral counting method by liquid scintillation counting

  • Masanori Hara
  • Masato Nakayama
  • Kiyokazu Hirokami
  • Tsukasa Aso


To know the appropriate quenching level, the modified integral counting method with various quenched samples (MICM-VQ) was applied for the determination of the disintegration rate of 14C or 35S. The appropriate quenching level for the MICM-VQ was considered by the comparison of the integral scintillation spectrum and the integral beta spectrum. The appropriate quenching level of sample in the MICM-VQ was found. The disintegration rate of sample having appropriate quenching level could be determined by the MICM-VQ.


Beta emitters Integral scintillation spectrum Beta spectrum Disintegration rate Modified integral counting method 



This work was supported by JSPS KAKENHI Grant Number 26610065.


  1. 1.
    Broda R, Cassette P, Kossert K (2007) Radionuclide metrology using liquid scintillation counting. Metrologia 44:S36–S52CrossRefGoogle Scholar
  2. 2.
    L’Annunziata MF, Kessler MJ (2003) Liquid scintillation analysis: principles and practice. In: L’Annunziata MF (ed) Handbook of radioactivity analysis. Academic press, CaliforniaGoogle Scholar
  3. 3.
    Goldstein G (1965) Absolute liquid-scintillation counting of beta emitters. Nucleonics 23:67–69Google Scholar
  4. 4.
    Homma Y, Murase Y, Hanada K (1994) The zero detection threshold of a liquid scintillation spectrometer and its application to liquid scintillation counting. Appl Radiat Isot 45:341–344CrossRefGoogle Scholar
  5. 5.
    Homma Y, Murase Y, Hanada K (1994) Absolute liquid scintillation counting of 35S and 45Ca using a modified integral counting method. J Radioanal Nucl Chem 187:367–374CrossRefGoogle Scholar
  6. 6.
    Takiue M, Ishikawa H (1978) Thermal neutron reaction cross section measurements for fourteen nuclides with a liquid scintillation spectrometer. Nucl Instrum Methods 148:157–161CrossRefGoogle Scholar
  7. 7.
    Grau Malonda A, Grau Carles A (2000) Standardization of electron-capture radionuclides by liquid scintillation counting. Appl Radiat Isot 52:657–662CrossRefGoogle Scholar
  8. 8.
    Günther E (2002) What can we expect from the CIEMAT/NIST method? Appl Radiat Isot 56:357–360CrossRefGoogle Scholar
  9. 9.
    Kulkarni DB, Reddy PJ, Bhade SPD, Sonail PD, Narayan KK, Narayanan A, Krishnamachari G, Sharma DN (2006) Comparison of efficiency tracing and zero detection threshold techniques with CIEMAT/NIST standardization method under different quench conditions with liquid scintillation spectrometer. Curr Sci 90:83–87Google Scholar
  10. 10.
    Reddy PJ, Bhade SPD, Babu DAR, Sharma DN (2011) Validation of efficiency tracing and zero detection threshold techniques using liquid scintillation analyser TriCarb. Radiat Prot Dosim 147:417–422CrossRefGoogle Scholar
  11. 11.
    Bé MM, Chisté V, Dulieu C, Browne E, Baglin C, Chechev V, Kuzmenco N, Helmer R, Kondev F, MacMahon D, Lee KB (2006) Table of radionuclides (Vol 3—A = 3–244), Monographie BIPM-5Google Scholar
  12. 12.
    Bé MM, Chisté V, Dulieu C, Mougeot X, Chechev VV, Kondev FG, Nichols AL, Huang X, Wang B (2013) Table of radionuclides (Vol 7—A = 14–245). Monographie BIPM-5Google Scholar
  13. 13.
    Moljk A, Curran SC (1954) Beta spectra of 14C and 35S. Phys Rev 96:395–398CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Masanori Hara
    • 1
  • Masato Nakayama
    • 1
  • Kiyokazu Hirokami
    • 2
  • Tsukasa Aso
    • 3
  1. 1.Hydrogen Isotope Research CenterUniversity of ToyamaToyama CityJapan
  2. 2.Radioisotope Laboratory, Center for Basic Research and Development in Natural SciencesUniversity of ToyamaToyama CityJapan
  3. 3.Department of Electronics and Computer Engineering, National Insutitute of TechnologyToyama CollegeImizu CityJapan

Personalised recommendations