Adsorption of cesium on different types of activated carbon

Abstract

The optimal conditions to remove radiocesium from water by adsorption on activated carbon (AC) were investigated. Two commercial ACs were compared to ACs prepared by steam activation of brewers’ spent grain. The influence of pH and loading AC with Prussian blue were studied. 134Cs, measured by gamma-ray spectroscopy, served as a tracer for the Cs concentration. Column experiments showed that a neutral to acidic pH enhanced adsorption compared to high pH. Norit GAC 1240 had the highest adsorption capacity, 8.5 µg Cs g−1 AC for a column filtration. Sequential columns of Norit GAC 1240 removed 28.1 ± 2.8 % of Cs per column.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Whicker FW, Kaplan DI, Garten CT Jr, Hamby DM, Higley KA, Hinton TG, Rowan DJ, Schreckhise RG (2007) 137Cs in the environment: Radioecology and Approaches to Assessment and Management. NCRP Book No. 154 National Council on Radiation Protection and Measurements. Bethesda

  2. 2.

    Steinhauser G, Brandl A, Johnson TE (2014) Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci Total Environ 470–471:800–817. doi:10.1016/j.scitotenv.2013.10.029

    Article  Google Scholar 

  3. 3.

    TEPCO (2013) Detailed analysis results in the port, discharge channel and bank protection at Fukushima Daiichi NPS (as of August 28)

  4. 4.

    Lestaevel P, Racine R, Bensoussan H, Rouas C, Gueguen Y, Dublineau I, Bertho J-M, Gourmelon P, Jourdain J-R, Souidi M (2010) Césium 137: propriétés et effets biologiques après contamination interne. Médecine Nucléaire 34:108–118

    Article  Google Scholar 

  5. 5.

    PHS (2004) Toxicological profile for cesium. Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  6. 6.

    Kinoshita N, Sueki K, Sasa K, J-i Kitigawa, Ikarashi S, Nishimura T, Wong Y-S, Satou Y, Handa K, Takahashi T, Sato M, Yamagata T (2011) Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan. Proc Natl Acad Sci 108:19526–21952

    CAS  Article  Google Scholar 

  7. 7.

    Liu X, Chen G-R, Lee D-J, Kawamoto T, Tanaka H, Chen M-L, Luo Y-K (2014) Adsorption removal of cesium from drinking waters: a mini review on use of biosorbents and other adsorbents. Bioresour Technol 160:142–149. doi:10.1016/j.biortech.2014.01.012

    CAS  Article  Google Scholar 

  8. 8.

    Li D, Kaplan DI, Knox AS, Crapse KP, Diprete DP (2014) Aqueous 99Tc, 129I and 137Cs removal from contaminated groundwater and sediments using highly effective low-cost sorbents. J Environ Radioact 136:56–63. doi:10.1016/j.jenvrad.2014.05.010

    CAS  Article  Google Scholar 

  9. 9.

    Ding D, Zhao Y, Yang S, Shi W, Zhang Z, Lei Z, Yang Y (2013) Adsorption of cesium from aqueous solution using agricultural residue—Walnut shell: equilibrium, kinetic and thermodynamic modeling studies. Water Res 47:2563–2571

    CAS  Article  Google Scholar 

  10. 10.

    Lan T, Feng Y, Liao J, Li X, Ding C, Zhang D, Yang J, Zeng J, Yang Y, Tang J, Liu N (2014) Biosorption behavior and mechanism of 137Cs on Rhodosporidium fluviale strain UA2 isolated from cesium solution. J Environ Radioact 134:6–13. doi:10.1016/j.jenvrad.2014.02.016

    CAS  Article  Google Scholar 

  11. 11.

    Parajuli D, Tanaka H, Hakuta Y, Minami K, Fukuda S, Umeoka K, Kamimura R, Hayashi Y, Ouchi M, Kawamoto T (2013) Dealing with the aftermath of Fukushima Daiichi nuclear accident: decontamination of radioactive cesium enriched ash. Environ Sci Technol 47(8):3800–3806. doi:10.1021/es303467n

    CAS  Article  Google Scholar 

  12. 12.

    Ding D, Lei Z, Yang Y, Feng C, Zhang Z (2014) Selective removal of cesium from aqueous solutions with nickel (II) hexacyanoferrate (III) functionalized agricultural residue–walnut shell. J Hazard Mater 270:187–195

    CAS  Article  Google Scholar 

  13. 13.

    Haas PA (1993) A review of information on ferrocyanide solids for removal of cesium from solutions. Sep Sci Technol 28(1):2479–2506

    CAS  Article  Google Scholar 

  14. 14.

    Ding D, Zhang Z, Lei Z, Yang Y, Cai T (2015) Remediation of radiocesium-contaminated liquid waste, soil, and ash: a mini review since the Fukushima Daiichi Nuclear Power Plant accident. Environ Sci Pollut Res 23(3):2249–2263. doi:10.1007/s11356-015-5825-4

    Article  Google Scholar 

  15. 15.

    Kimura K, Hachinohe M, Klasson KT, Hamamatsu S, Hagiwara S, Todoriki S, Kawamoto S (2014) Removal of radioactive cesium from low-level contaminated water by charcoal and broiler litter biochar. Food Sci Technol Res 20(6):1183–1189. doi:10.3136/fstr.20.1183

    Article  Google Scholar 

  16. 16.

    Parab H, Sudersanan M (2010) Engineering a lignocellulosic biosorbent: coir pith for removal of cesium from aqueous solutions: equilibrium and kinetic studies. Water Res 44(3):854–860. doi:10.1016/j.watres.2009.09.038

    CAS  Article  Google Scholar 

  17. 17.

    Ofomaja AE, Pholosi A, Naidoo EB (2015) Application of raw and modified pine biomass material for cesium removal from aqueous solution. Ecol Eng 82:258–266. doi:10.1016/j.ecoleng.2015.04.041

    Article  Google Scholar 

  18. 18.

    Mohan DP, Pittman CU Jr (2006) Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater B137:762–811

    Article  Google Scholar 

  19. 19.

    Marsh H, Rodríguez-Reinoso F (2006) Activated carbon. Elsevier Science & Technology books, Oxford

    Google Scholar 

  20. 20.

    Montana MC, Camacho A, Serrano I, Devesa R, Matia L, Vallés I (2013) Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal. J Environ Radioact 25:86–92

    Article  Google Scholar 

  21. 21.

    Biniak S, Szymanski G, Siedlewski J, Swiatkowski A (1997) The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35(12):1799–1810

    CAS  Article  Google Scholar 

  22. 22.

    McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54

    CAS  Article  Google Scholar 

  23. 23.

    Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12:504–517

    CAS  Article  Google Scholar 

  24. 24.

    Bansal RC, Goyal M (2005) Activated carbon adsorption. Taylor & Francis, Boca Raton

    Google Scholar 

  25. 25.

    Menéndez-Díaz JA, Martin-Gullón I (2005) Types of carbon adsorbents and their production. In: Bandosz TJ (ed) Activated carbon surfaces in environmental protection. Elsevier Ltd., Amsterdam

    Google Scholar 

  26. 26.

    Hameed BH, Rahman AA (2008) Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J Hazard Mater 160:576–581

    CAS  Article  Google Scholar 

  27. 27.

    Vanreppelen K, Vanderheyden S, Kuppens T, Schreurs S, Yperman J, Carleer R (2014) Activated carbon from pyrolysis of brewer’s spent grain: production and adsorption properties. Waste Manag Res 32(7):634–645

    CAS  Article  Google Scholar 

  28. 28.

    Tanthapanichakoon W, Ariyadejwanich P, Japthong P, Nakagawa K, Mukai SR, Tamon H (2005) Adsorption-desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires. Water Res 39:1347–1353

    CAS  Article  Google Scholar 

  29. 29.

    Mussatto SI, Dragone G, Roberto IC (2006) Brewer’s spent grain: generation, characteristics and potential applications. J Cereal Sci 43:1–14

    CAS  Article  Google Scholar 

  30. 30.

    Mahmood ASN, Brammer JG, Hornung A, Steele A, Poulston S (2013) The intermediate pyrolysis and catalytic steam reforming of Brewers spent grain. J Anal Appl Pyrol 103:328–342

    CAS  Article  Google Scholar 

  31. 31.

    Yang G, Chen H, Qin H, Feng Y (2014) Amination of activated carbon for enhancing phenol adsorption: effect of nitrogen-containing functional groups. Appl Surf Sci 293:299–305

    CAS  Article  Google Scholar 

  32. 32.

    Bagreev A, Bashkova S, Bandosz TJ (2002) Adsorption of SO2 on activated carbons: the effect of nitrogen functionality and pore siz. Langmuir 18(4):1257–1264

    CAS  Article  Google Scholar 

  33. 33.

    Bagreev A, Menendez JA, Dukhno I, Tarasenko Y, Bandosz TJ (2004) Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide. Carbon 42:469–476

    CAS  Article  Google Scholar 

  34. 34.

    Hayden RA (1995) Method for reactivating nitrogen-treated carbon catalysts. Google Patents

  35. 35.

    Lorenc-Grabowska E, Gryglewicz G, Diez MA (2012) Kinetics and equilibrium study of phenol adsorption on nitrogen-enriched activated carbons. Fuel 114:235–243

    Article  Google Scholar 

  36. 36.

    Matzner SB, Boehm HP (1998) Influence of nitrogen doping on the adsorption and reduction of nitric oxide by activated carbon. Carbon 36(11):1697–1709

    CAS  Article  Google Scholar 

  37. 37.

    Bandosz TJ, Ania CO (2006) Surface chemistry of activated carbons and its characterization. In: Bandosz TJ (ed) Activated carbon surfaces in environmental remediation. Elsevier, Oxford, pp 159–229

    Google Scholar 

  38. 38.

    Song K-C, Lee HK, Moon H, Lee KJ (1997) Simultaneous removal of the radiotoxic nuclides 137Cs and 129I from aqueous solution. Sep Purif Technol 12(3):215–227. doi:10.1016/S1383-5866(97)00045-2

    CAS  Article  Google Scholar 

  39. 39.

    Caccin M, Giacobbo F, Da Ros M, Besozzi L, Mariani M (2012) Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. J Radioanal Nucl Chem 297(1):9–18. doi:10.1007/s10967-012-2305-x

    Article  Google Scholar 

  40. 40.

    Cabot Corporation - Safety Health and Environmental Affairs (2015) Safety data sheet: Norit GAC 1240

  41. 41.

    Calgon Carbon (2015) Filtrasorb 400: granular activated carbon-Data sheet

  42. 42.

    Mikhail RS, Brunauer S, Bodor EE (1968) Investigations of a complete pore structure analysis. J Colloid Interface Sci 26(1):45–53. doi:10.1016/0021-9797(68)90270-1

    CAS  Article  Google Scholar 

  43. 43.

    Klobes P, Meyer K, Munro RG (2006) Porosity and specific surface area measurements for solid materials. National Institute of Standards and Technology, Washington

    Google Scholar 

  44. 44.

    Mohammad A, Yang Y, Khan MA, Faustino PJ (2015) Long-term stability study of Prussian blue: a quality assessment of water content and cyanide release. Clin Toxicol 53(2):102–107. doi:10.3109/15563650.2014.998337

    CAS  Article  Google Scholar 

  45. 45.

    Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrodes. Biosens Bioelectron 21(3):389–407. doi:10.1016/j.bios.2004.12.001

    CAS  Article  Google Scholar 

  46. 46.

    Vanreppelen K (2016) Towards a circular economy: development, characterisation, techno-economic analysis and applications of activated carbons from industrial rest streams. UHasselt, To be defended

  47. 47.

    Bé M-M, Chisté V, Dulieu C, Mougeot X, Chechev VP, Kondev FG, Nichols AL, Huang X, Wang B (2012) Table de Radionucléides—134Cs

  48. 48.

    Lalhmunsiama Lalhriatpuia C, Tiwari D, Lee S-M (2014) Immobilized nickel hexacyanoferrate on activated carbons for efficient attenuation of radio toxic Cs(I) from aqueous solutions. Appl Surf Sci 321:275–282. doi:10.1016/j.apsusc.2014.09.200

    CAS  Article  Google Scholar 

  49. 49.

    Brown J, Hammond D, Wilkins BT (2008) Handbook for assessing the impact of a radiological incident on levels of radioactivity in drinking water and risks to operatives at water treatment works: supporting Scientific Report Oxfordshire

Download references

Acknowledgments

This work was supported by the European Commission within HORIZON2020 via the EURATOM Project EUFRAT. The authors would also like to thank Prof. Vera Meynen from the Department of Chemistry, Laboratory for Adsorption and Catalysis, University Antwerp, Belgium.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. R. H. Vanderheyden.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vanderheyden, S.R.H., Van Ammel, R., Sobiech-Matura, K. et al. Adsorption of cesium on different types of activated carbon. J Radioanal Nucl Chem 310, 301–310 (2016). https://doi.org/10.1007/s10967-016-4807-4

Download citation

Keywords

  • Activated carbon
  • Adsorption
  • Radiocesium
  • Radioactive waste water
  • Environmental remediation
  • Low-level (radioactive) waste