Studies of removal of uranium from wastewater by novel magmolecular process with the aim to learn for nuclear waste management

  • Samira Shirvani
  • Mohammad Hassan Mallah
  • Mohammad Ali Moosavian
  • Jaber Safdari


In this study the magmolecular process, a novel, simple and efficient technique has been used for separation of uranium from wastewater. In the first step of magmolecular process (chemical absorption), magnetic ionic liquid was applied as a sorbent. The effects of operating variables and optimal condition have been investigated. In optimal sorption condition, the equilibrium was attained no later than 20 min. The second step of magmolecular process (magnetic attraction) was performed in this condition where, an external magnetic field was applied around the solution. As a result, complete separation of uranium can be achieved with more than 89 % efficiency.


Removal of uranium Magmolecular process Magnetic ionic liquid 


  1. 1.
    Hileman B (1982) Nuclear waste disposal. J Am Chem Soc 16(5):271A–275AGoogle Scholar
  2. 2.
    De Groot JIM, Steg L (2010) Morality and nuclear energy: perceptions of risks and benefits, personal norms, and willingness to take action related to nuclear energy. Risk Anal 30(9):1363–1373CrossRefGoogle Scholar
  3. 3.
    Liu Y, Li Q, Cao X, Wang Y, Jiang X, Li M, Hua M, Zhang Z (2013) Removal of uranium (VI) from aqueous solutions by CMK-3 and its Polymer composite. Appl Surf Sci 285:258–266CrossRefGoogle Scholar
  4. 4.
    Rao TP, Metilda P, Gladis JM (2006) Preconcentration techniques for uranium (VI) and thorium (IV) prior to analytical determination: an overview. Talanta 68:1047–1064CrossRefGoogle Scholar
  5. 5.
    Ambashta RD, Sillanpää M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 180(1):38–49CrossRefGoogle Scholar
  6. 6.
    Feng D, Aldrich C, Tan H (2000) Removal of heavy metal ions by carrier magnetic separation of adsorptive particulates. Hydrometallurgy 56(3):359–368CrossRefGoogle Scholar
  7. 7.
    Huang SH, Chen DH (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J Hazard Mater 163(1):174–179CrossRefGoogle Scholar
  8. 8.
    Van Velsen AFM, Van der Vos G, Boersma R, De Reuver JL (1991) High gradient magnetic separation technique for wastewater treatment. Water Sci Technol 24(10):195–203Google Scholar
  9. 9.
    Nabavi Larimi Y, Mallah MH, Moosavian MA, Safdari J (2013) Fabrication of magmolecule using nanoparticle and evaluation of its adsorption capacity for selenium ions from nuclear wastewater. J Radioanal Nucl Chem 298(3):1511–1518CrossRefGoogle Scholar
  10. 10.
    Rooygar AA, Mallah MH, Abolghasemi H, Safdari J (2014) New “magmolecular” process for the separation of antimony (III) from aqueous solution. J Chem Eng Data 59(11):3545–3554CrossRefGoogle Scholar
  11. 11.
    Shirvani S, Mallah MH, Moosavian MA, Safdari J (2016) Magnetic ionic liquid in magmolecular process for uranium removal. Chem Eng Res Des 109:108–115CrossRefGoogle Scholar
  12. 12.
    Earle JM, Seddon RK (2000) Ionic liquids green solvents for the future. Pure Appl Chem 72(7):1391–1398CrossRefGoogle Scholar
  13. 13.
    Kokorin A (2011) Ionic liquids: theory, property, new approaches, InTech Publication, Material Science, ISBN: 978- 953-307-349-1Google Scholar
  14. 14.
    Bernhem K (2013) How ionic are ionic liquids? MSc Thesis, KTH Royal Institute of Technology, Department of Chemistry, StockholmGoogle Scholar
  15. 15.
    Laus G, Bentivoglio G, Schottenberger H, Kahlenberg V, Kopacka K, Röder T, Sixta H (2005) Ionic liquids: current developments, potential and drawbacks for industrial applications. Lenzinger Berichte 84:71–85Google Scholar
  16. 16.
    Hayashi S, Hamaguchi HO (2004) Discovery of a magnetic ionic liquid [bmim]FeCl4. Chem Lett 33(12):1590–1591CrossRefGoogle Scholar
  17. 17.
    Hayashi S, Saha S, Hamaguchi H (2006) A new class of magnetic fluids: bmim[FeCl4] and nbmim[FeCl4] ionic liquids. IEEE Trans Magn 42(1):12–14CrossRefGoogle Scholar
  18. 18.
    Lee SH, Ha SH, You C, Koo Y (2007) Recovery of magnetic ionic liquid [bmim]fecl4 using electromagnet. Korean J Chem Eng 24(3):436–437CrossRefGoogle Scholar
  19. 19.
    Noubactep C, Schöner A, Meinrath G (2006) Mechanism of uranium removal from the aqueous solution by elemental iron. J Hazard Mater 132(2):202–212CrossRefGoogle Scholar
  20. 20.
    Bruno J, De Pablo J, Duro L, Figuerola E (1995) Experimental study and modeling of the U(VI)-Fe(OH)3 surface precipitation/coprecipitation equilibria. Geochim Cosmochim Acta 59(20):4113–4123CrossRefGoogle Scholar
  21. 21.
    Scott TB, Allen GC, Heard PJ, Lewis AC, Lee DF (2005) The extraction of uranium from ground waters on iron surfaces. Proc R Soc Lond Math Phys Eng Sci 461(2057):1247–1259CrossRefGoogle Scholar
  22. 22.
    Nico PS, Stewart BD, Fendorf S (2009) Incorporation of oxidized uranium into Fe(hydr)oxides during Fe(II) catalyzed demineralization. Environ Sci Technol 43(19):7391–7396CrossRefGoogle Scholar
  23. 23.
    Marczenko Z, Balcerzak M (2000) Separation, preconcentration and spectrophotometry in inorganic analysis. Elsevier, Amsterdam, p 10Google Scholar
  24. 24.
    Khan MH, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with Arsenazo-III in perchloric acid. Chemosphere 63:1165–1169CrossRefGoogle Scholar
  25. 25.
    Golmohammadi H, Rashidi A, Safdari J (2012) Simple and rapid spectrophotometric method for determination of uranium (VI) in low grade uranium ores using arsenazo (III). Chem Chem Technol 6(3):245–249Google Scholar
  26. 26.
    Burger K, Belcher R, Freiser H (1973) Organic reagents in metal analysis, vol 54. Hungarian Academy of Science, Budapest. ISBN 978-0-08-016929-3Google Scholar
  27. 27.
    Kuroda R, Kurosaki M, Hayashibe Y, Ishimaru S (1990) Simultaneous determination of uranium and thorium with arsenazo III by second-derivative spectrophotometry. Talanta 37:619–624CrossRefGoogle Scholar
  28. 28.
    Gu B, Liang L, Dickey MJ, Yin X, Dai S (1998) Reductive precipitation of uranium (VI) by zero-valent iron. Environ Sci Technol 32(21):3366–3373CrossRefGoogle Scholar
  29. 29.
    Wersin P, Hochella MF (1994) Interaction between aqueous uranium (VI) and sulfide minerals: spectroscopic evidence for sorption and reduction. Geochim Cosmochim Acta 58(13):2829–2843CrossRefGoogle Scholar
  30. 30.
    Wazne M, Korfiatis GP, Meng XG (2003) Carbonate Effects on hexavalent uranium adsorption by iron oxyhydroxide. Environ Sci Technol 37(16):3619–3624CrossRefGoogle Scholar
  31. 31.
    Hsi C-KD, Langmuir D (1985) Adsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation site-binding model. Geochim Cosmochim Acta 49(9):1931–1941CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Samira Shirvani
    • 1
  • Mohammad Hassan Mallah
    • 2
  • Mohammad Ali Moosavian
    • 1
  • Jaber Safdari
    • 2
  1. 1.School of Chemical Engineering, University College of EngineeringUniversity of TehranTehranIran
  2. 2.Nuclear Fuel Cycle SchoolNuclear Science and Technology Research InstituteTehranIran

Personalised recommendations