Journal of Radioanalytical and Nuclear Chemistry

, Volume 309, Issue 3, pp 1105–1112 | Cite as

Simulation of beta–gamma coincidence spectra of radioxenon detector using gate 7.0 and comparison with experimental results



In this study, the coincidence responses of a radioxenon detection system were simulated by the Gate 7.0 code. The Compton scattering of 137Cs gamma-rays was simulated and the 3D coincidence spectrum was obtained. The capability of this code to define radionuclides as radioactive sources was employed to simulate coincidence spectra of 214Pb and 131mXe. The simulation results were verified by the experimental data and an excellent agreement was observed. The coincidence spectra of radioxenon isotopes obtained in the simulation, conformed to the expected pattern for beta–gamma coincidence. This research findings can be used for development of the spectrum analyzer software.


Radioxenon Gate 7.0 Coincidence simulation Beta–gamma INGAS 


  1. 1.
    Saey PRJ, De Geer L-E (2005) Notes on radioxenon measurements for CTBT verification purposes. Appl Radiat Isot 63:765–773CrossRefGoogle Scholar
  2. 2.
    Le Petit G, Armand P, Brachet G, Taffary T, Fontaine JP, Achim P, Blanchard X, Piwowarczyk JC, Pointurier F (2008) Contribution to the development of atmospheric radioxenon monitoring. J Radioanal Nucl Chem 276:391–398CrossRefGoogle Scholar
  3. 3.
    Ringbom A, Larson T, Axelsson A, Elmgren K, Johansson C (2003) SAUNA—a system for automatic sampling, processing, and analysis of radioactive xenon. Nucl Instr Meth Phys Res A 508:542–553CrossRefGoogle Scholar
  4. 4.
    Bowyer TW, Abel KH, Hubbard CW, McKinnon AD, Panisko ME, Perkins RW, Reeder PL, Thompson RC, Warner RA (1998) Automated separation and measurement of radioxenon for the comprehensive test ban treaty. J Radioanal Nucl Chem 235:77–81CrossRefGoogle Scholar
  5. 5.
    Alemayehu B, Farsoni AT, Ranjber L, Becker EM (2014) A well-type phoswich detector for nuclear explosion monitoring. J Radioanal Nucl Chem 301(2):323–332CrossRefGoogle Scholar
  6. 6.
    Henning W, Tan H, Fallu-Labruyere A, Warburton WK, McIntyre JI, Gleyzer A (2007) A phoswich well detector for radioxenon monitoring. Nucl Instr Meth Phys Res A 579:431–436CrossRefGoogle Scholar
  7. 7.
    Farsoni AT, Hamby DM (2010) Characterizing a two channel phoswich detector using radioxenon isotopes produced in the Oregon State University TRIGA reactor. In Proceedings of the 2010 Monitoring Research Review: ground-based nuclear explosion monitoring technologies. LA-UR-10-05578, vol 2. pp. 585–594Google Scholar
  8. 8.
    Reeder PL, Bowyer TW, McIntyre JI, Pitts WK, Ringbom A, Johansson C (2004) Gain calibration of β/γ coincidence spectrometer for automated radioxenon analysis. Nucl Instr Meth Phys Res A 521:586–599CrossRefGoogle Scholar
  9. 9.
    Haas DA, Biegalski SR, Foltz Biegalski KM (2008) Modeling β-γ coincidence spectra of 131mXe, 133Xe, 133mXe, and 135Xe. J Radioanal Nucl Chem 277:561–565CrossRefGoogle Scholar
  10. 10.
    Mekarski P, Zhang W, Ungar K, Bean M, Korpach E (2009) Monte Carlo simulation of a PhosWatch detector using Geant4 for xenon isotope beta–gamma coincidence spectrum profile and detection efficiency calculations. Appl Radiat Isot 67:1957–1963CrossRefGoogle Scholar
  11. 11.
    Zhang W, Mekarski P, Lam J, Ungar K (2010) A Geant4 Monte Carlo method for synthesizing radioxenon beta–gamma coincidence spectra. J Radioanal Nucl Chem 286:235–240CrossRefGoogle Scholar
  12. 12.
    Zhang W, Mekarski P, Bean M, Yi J, Ungar K (2011) An optimized design of single-channel beta–gamma coincidence phoswich detector by geant4monte carlo simulations. Hindawi Publ Corp Sci Technol Nucl Install 2011:1–5CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Jan S, Santin G, Strul D, Staelens S, Assi´e K, Autret D, Avner S, Barbier R (2004) GATE: a simulation toolkit for PET and SPECT. Phys Med Biol 49:4543–4561CrossRefGoogle Scholar
  15. 15.
    Doost-Mohammadi V, Afarideh H, Etaati GR, Safari MJ, Rouhi H (2016) INGAS: Iranian noble gas analyzing system for radioxenon measurement. Radiat Phys Chem 120:26–32CrossRefGoogle Scholar
  16. 16.
    Antcheva I, Ballintijn M, Bellenot B, Biskup M, Brun R, Buncic N, Canal P, Casadei D, Couet O, Fine V (2009) ROOT—A C ++ framework for petabyte data storage, statistical analysis and visualization. Comput Phys Commun 180:2499–2512CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • V. Doost-Mohammadi
    • 1
  • H. Afarideh
    • 2
  • G. R. Etaati
    • 2
  1. 1.Nuclear Science and Technology Research InstituteAEOITehranIran
  2. 2.Department of Energy Engineering and PhysicsAmir Kabir University of TechnologyTehranIran

Personalised recommendations