Journal of Radioanalytical and Nuclear Chemistry

, Volume 309, Issue 3, pp 1175–1181 | Cite as

Removal of uranium from contaminated soil using indoor electrokinetic decontamination

  • Gye-Nam Kim
  • Ilgook Kim
  • Seung-Soo Kim
  • Jong-Won Choi


Indoor electrokinetic decontamination equipment was manufactured to treat 1.2 tons of uranium-contaminated soil. For a reduction of waste electrolyte and metal oxide, waste electrolyte was reused and the optimum pH was adjusted to minimize metal oxide volume in the cathode chamber. It was found that the optimum pH of the waste electrolyte in a cathode chamber was below 2.35 at 25 °C. When the initial uranium concentrations in the soils were 7.0–27.0 Bq/g, the reuse periods of waste electrolyte required for uranium concentrations in the soils to reach below 5.0 Bq/g were 5–25 days. In addition, when the initial concentrations in the soils were 7.0–20.0 Bq/g, the periods required to reach below the clearance concentration level were 25–40 days.


Decontamination Uranium Removal Soil Electrokinetic Electrolyte 


  1. 1.
    Kim GN, Choi WK, Moon JK, Bung CH (2007) J Ind Eng Chem 13:406–413Google Scholar
  2. 2.
    Kim GN, Jung YH, Lee JJ, Moon JK (2008) J Korean Radioactive Waste Soc 25(2):146–153Google Scholar
  3. 3.
    USEPA (1995) In Situ Remediation Technology: Electrokinetics. EPA 542-K-94-007, Washington, DCGoogle Scholar
  4. 4.
    van Cauwenberghe L (1997)Electrokinetics, GWRTAC Technology overview report, TO-97-03, Ground-Water Remediation Technologies Center, Pittsburg, PAGoogle Scholar
  5. 5.
    Shrestha RA (2004) Investigations on the phenomena of accumulation and mobilization of heavy metals and arsenic at the sediment-water interface by electrochemically initiated processes. Thesis, Technical University DresdenGoogle Scholar
  6. 6.
    Wallmann PC (1994) Elecktrokineticremediation DOE/EM-0138P, U.S. Department of Energy, available at Accessed 8 Dec 2015
  7. 7.
    Buck EC, Brown NR, Dietz NL (1996) Environ Sci Technol 30:80–88CrossRefGoogle Scholar
  8. 8.
    Francis CW, Mattus AJ, Elless MP, Timpson ME (1993) Carbonate and citrate based selective leaching of uranium from uranium contaminated soils. DOE 325 Report, ORNL-6762, Oak Ridge National laboratory, U.S. Department of Energy, TennesseeGoogle Scholar
  9. 9.
    Lindgren ER, Brady PV (1997) US Patent No. 5, pp 676–819Google Scholar
  10. 10.
    Pamukcu S, Wittle JK (1992) Environ Prog 11:241–250CrossRefGoogle Scholar
  11. 11.
    Reddy K, Xu CY, Chinthamreddy S (2001) J Hazard Mater 84:279–296CrossRefGoogle Scholar
  12. 12.
    Reddy KR, Chinthamreddy S (2003) J Geotech Geoenviron Eng 129:263–277CrossRefGoogle Scholar
  13. 13.
    Braud F, Tellier S, Astruc M (1998) Int J Environ Anal Chem 68:105–121CrossRefGoogle Scholar
  14. 14.
    Kim SO, Moon SH, Kim KW (2001) Water Air Soil Pollut 125:259–272CrossRefGoogle Scholar
  15. 15.
    Page MM, Page CL (2002) J Environ Eng ASCE 128:208–219CrossRefGoogle Scholar
  16. 16.
    Macka M, Nesterenko P, Haddad PR (1999) J Microcolumn Sep 11:1–9CrossRefGoogle Scholar
  17. 17.
    Scapolan S, Ansoborlo E, Moulin C, Madic C (1997) J Radioanal Nucl Chem 226:145–148CrossRefGoogle Scholar
  18. 18.
    Collins GE, Lu Q (2001) Anal Chem Acta 436:181–189CrossRefGoogle Scholar
  19. 19.
    Shapiro AP, Probstein RF (1993) Environ Sci Technol 27:283–291CrossRefGoogle Scholar
  20. 20.
    Lageman R, Pool W, Seffinga G (1989) Chem Ind 8:585–590Google Scholar
  21. 21.
    IAEA (2004) Application of the concepts of exclusion, exemption and clearance. Safety standards series No. RS-G-1.7, ViennaGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Gye-Nam Kim
    • 1
  • Ilgook Kim
    • 1
  • Seung-Soo Kim
    • 1
  • Jong-Won Choi
    • 1
  1. 1.Korea Atomic Energy Research InstituteDaejeonKorea

Personalised recommendations