Advertisement

Use of neutron reflection method for chemical analysis of bulk samples

  • Attila Papp
  • Julius Csikai
Article

Abstract

The aim of our study carried out during the last 5–6 years was to find the hidden organic materials (for example explosives or drugs) in bulk objects with the neutron reflection and activation methods. The applicability of the concept of the differential σ β and integral Σβ reflection cross sections is also demonstrated. Further investigations are also recommended to improve the neutron reflection method.

Keywords

Neutron activation Neutron reflection Illicit drugs Landmines Diffusion lengths 

Notes

Acknowledgments

This work was supported in part by the Hungarian Academy of Sciences and the TÁMOP-4.2.2/B-10/1–2010-0024 project, which is co-financed by the European Union, the European Social Fund. Thanks are due also to the EC-JRC-IRMM (Geel) and the UN IAEA Physics Section for their help and interest in these investigations.

References

  1. 1.
    Bulk Hydrogen Analysis Using Neutrons (1997) IAEA Vienna PS/RCM/97-1Google Scholar
  2. 2.
    Application of Nuclear Techniques to Anti-Personnel Landmines Identifications (1999) IAEA Vienna PS/RC-799Google Scholar
  3. 3.
    Csikai J, Hussein E, Rosengard U (2004) Applied Radiation and Isotopes (Special Issue) 61Google Scholar
  4. 4.
    Csikai J (2004) Neutron-based techniques for the detection of concealed objects. Acta Phys Debrecina 37:7–31Google Scholar
  5. 5.
    Csikai J, ElAgib I, Buczkó CsM (1998) Studies on the neutron reflection, scattering and transmission methods used for bulk hydrogen analysis. IAEA/PS/RCM98-2, IAEA HQ, ViennaGoogle Scholar
  6. 6.
    ElAgib I, Csikai J, Jordanova J, Oláh L (1999) Leakage neutron spectra from spherical samples with a Pu–Be source. Appl Radiat Isot 51:329–333CrossRefGoogle Scholar
  7. 7.
    Csikai J, ElAgib I (1999) Bulk media assay using backscattered Pu–Be neutrons. Nuclear Instrum Methods Phys Res A 432:410–414CrossRefGoogle Scholar
  8. 8.
    Király B, Oláh L, Csikai J (2001) Neutron-based techniques for detection of explosives and drugs. Radiat Phys Chem 61:781–784CrossRefGoogle Scholar
  9. 9.
    Király B, Sanami T, Csikai J (2003) Advantages and limitations of thermal and epithermal neutron activation analysis of bulk samples. Appl Radiat Isot 58:691–695CrossRefGoogle Scholar
  10. 10.
    Király B, Sanami T, Dóczi R, Csikai J (2004) Detection of explosives and illicit drugs using neutrons. Nucl Instrum Methods Phys Res B 213:452–456CrossRefGoogle Scholar
  11. 11.
    Papp A, Csikai J (2011) Detection and identification of explosives and illicit drugs using neutron based techniques. J Radioanal Nucl Chem 288:363–371CrossRefGoogle Scholar
  12. 12.
    Papp A, Csikai J (2009) Lateral flux distributions of thermal and epithermal neutrons around a Pu–Be source. Acta Phys Debrecina 43:10–14Google Scholar
  13. 13.
    Papp A, Csikai J (2010) Studies on the properties of an epithermal-neutron hydrogen analyzer. Appl Radiat Isot 68:1677–1681CrossRefGoogle Scholar
  14. 14.
    Buczkó M, Dezsõ Z, Csikai J (1975) Determination of the bitumen content in asphalt concrete using a neutron reflection method. J Radioanal Chem 25:179–183CrossRefGoogle Scholar
  15. 15.
    Király B, Csikai J (2000) Investigations on thermal neutron reflection by activation method. Appl Radiat Isot 52:93–96CrossRefGoogle Scholar
  16. 16.
    Papp A (2013) Studies on the detection of concealed objects using the neutron reflection method. Appl Radiat Isot 75:26–29CrossRefGoogle Scholar
  17. 17.
    Csikai J, CsM Buczkó (1999) The concept of the reflection cross sections of thermal neutrons. Appl Radiat Isot 50:487–490CrossRefGoogle Scholar
  18. 18.
    Papp A, Csikai J (2014) Use of thermal neutron reflection method for chemical analysis of bulk samples. Nucl Instrum Methods Phys Res A 758:26–29CrossRefGoogle Scholar
  19. 19.
    Papp A, Csikai J (2013) Use of neutron albedo to detect plastic explosives. Acta Phys Debrecina 47:137–150Google Scholar
  20. 20.
    Dokhale PA, Csikai J, Oláh L (2001) Investigations on neutron-induced prompt gamma-ray analysis of bulk samples. Appl Radiat Isot 54:967–971CrossRefGoogle Scholar
  21. 21.
    Oláh L (2000) PhD Thesis (in Hungarian). University of Debrecen, HungaryGoogle Scholar
  22. 22.
    Oláh L, El-Megrab AM, Fenyvesi A, Majdeddin AD, Dóczi R, Semkova V, Qaim SM, Csikai J (1998) Investigations on neutron fields produced in 2H(d, n)3He and 9Be(d, n)10B reactions. Nucl Instrum Methods Phys Res A 404:373–380CrossRefGoogle Scholar
  23. 23.
    Womble PC, Csikai J, Dokhale PA, Paschal J, Vourvopoulos G (1999) Neutron-based portable drug probe. Fourth Topical Meeting on Industrial Radiation and Radioisotope Measurement Applications, IRRMA’99, Raleigh, USAGoogle Scholar
  24. 24.
    Papp A, Csikai J (2012) Flux albedo of neutrons with thermal and 1.45 eV energies. Acta Phys Debrecina. 46:123–131Google Scholar
  25. 25.
    Amaldi E, Fermi E (1936) On the absorption and the diffusion of slow neutrons. Phys Rev 50:899–928CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI)Debrecen, Pf. 51Hungary
  2. 2.Institute of Experimental PhysicsUniversity of Debrecen (IEP)Debrecen-10, Pf. 105Hungary

Personalised recommendations