Journal of Radioanalytical and Nuclear Chemistry

, Volume 309, Issue 2, pp 647–657 | Cite as

Sorption of cesium on boreal forest soil II. The effect of time, incubation conditions, pH and competing cations

  • Mervi Söderlund
  • Sinikka Virtanen
  • Ilkka Välimaa
  • Janne Lempinen
  • Martti Hakanen
  • Jukka Lehto


Cesium sorption on Olkiluoto mineral soil samples was studied in batch experiments. The effect of incubation time, incubation conditions, pH and competing cations were investigated. The retention of cesium increased with increasing time. In anaerobic conditions the sorption of cesium was lower than in aerobic ones, possibly caused by the formation of NH4 +. Increase in pH promoted the sorption of cesium. Stable cesium reduced the sorption of 134Cs+ the most, and the overall sorption hindering effectivity of cations decreased in the order of stable Cs+ > NH4 + > K+ » Ca2+ > Na+.


Radiocesium Olkiluoto soil Aerobic and anaerobic pH Competing cations Distribution coefficient 



The authors wish to thank Posiva Oy for funding this study as a part of the research programme for a spent nuclear fuel repository. The Finnish Doctoral Programme for Nuclear Engineering and Radiochemistry (YTERA) is thanked for financial support for this manuscript.


  1. 1.
    Posiva (2009) Olkiluoto site description 2008: Part 1. Posiva 2009-01, 1–390Google Scholar
  2. 2.
    Posiva (2013) safety case for the disposal of spent nuclear fuel at Olkiluoto—models and data for the repository system 2012. Posiva 2013-01, 1–474Google Scholar
  3. 3.
    Raiko H (2005) Disposal canister for spent nuclear fuel—design report. Posiva 2005-02, 1–71Google Scholar
  4. 4.
    Lieser Κ, Steinkopff TH (1989) Chemistry of radioactive cesium in the hydrosphere and in the geosphere. Radiochim Acta 46(1):39–48Google Scholar
  5. 5.
    Lusa M, Ämmälä K, Hakanen M, Lehto J, Lahdenperä A-M (2009) Chemical and geotechnical analyses of soil samples from Olkiluoto for studies on sorption in soils. Posiva Working Report 2009-33, 1–152Google Scholar
  6. 6.
    Lusa M, Lempinen J, Ahola H, Söderlund M, Ikonen ATK, Lahdenperä A-M, Lehto J (2014) Sorption of cesium in young till soils. Radiochim Acta 102(7):645–658CrossRefGoogle Scholar
  7. 7.
    Sparks DL (2003) Environmental soil chemistry. Academic Press, San DiegoGoogle Scholar
  8. 8.
    Essington ME (2004) Soil and water chemistry: an integrative approach. CRC Press, Boca RotaGoogle Scholar
  9. 9.
    Shenber MA, Eriksson Å (1993) Sorption behaviour of caesium in various soils. J Environ Radioact 19(1):41–51CrossRefGoogle Scholar
  10. 10.
    Giannakopoulou F, Haidouti C, Chronopoulou A, Gasparatos D (2007) Sorption behavior of cesium on various soils under different pH levels. J Hazard Mater 149(3):553–556CrossRefGoogle Scholar
  11. 11.
    Sawhney BL (1972) Selective sorption and fixation of cations by clay minerals: a review. Clays Clay Miner 20(2):93–100CrossRefGoogle Scholar
  12. 12.
    Cornell RM (1993) Adsorption of cesium on minerals: a review. J Radioanal Nucl Chem 171(2):483–500CrossRefGoogle Scholar
  13. 13.
    Nakao A, Thiry Y, Funakawa S, Kosaki T (2008) Characterization of the frayed edge site of micaceous minerals in soil clays influenced by different pedogenetic conditions in Japan and northern Thailand. Soil Sci Plant Nutr 54(4):479–489CrossRefGoogle Scholar
  14. 14.
    Söderlund M, Hakanen M, Lehto J (2015) Sorption of cesium on boreal forest soil I. The effect of grain size, organic matter and mineralogy. J Radioanal Nucl Chem. doi: 10.1007/s10967-015-4612-5
  15. 15.
    Lahdenperä A-M (2009) Summary of the overburden studies of the soil pits OL-KK14, OL-KK15, OL-KK16, OL-KK17, OL-KK18 and OL-KK19 at Olkiluoto, Eurajoki in 2008. Posiva Working Report 2009-109, 1–88Google Scholar
  16. 16.
    Haapanen R, Aro L, Helin J, Hjerpe T, Ikonen ATK, Kirkkala T, Koivunen S, Lahdenperä A-M, Puhakka L, Rinne M, Salo T (2009) Olkiluoto Biosphere Description 2009. Posiva 2009-2, 1–416Google Scholar
  17. 17.
    Aikpokpodion PE, Osobamiro T, Atewolara-Odule OC, Oduwole OO, Ademola SM (2013) Studies on adsorption mechanism and kinetics of magnesium in selected cocoa growing soils in Nigeria. J Chem Pharm Res 5(6):128–139Google Scholar
  18. 18.
    Lusa M, Blomberg H, Aromaa H, Knuutinen J, Lehto J (2015) Sorption of radioiodide in an acidic, nutrient-poor boreal bog: insights into the microbial impact. J Environ Radioact 143(1):110–122CrossRefGoogle Scholar
  19. 19.
    Ho YS, McKay G (2004) Sorption of Copper(II) from aqueous solution by peat. Water Air Soil Pollut 158(1):77–97CrossRefGoogle Scholar
  20. 20.
    Shetaya WH, Young SD, Watts MJ, Ander EL, Bailey EH (2012) Iodine dynamics in soils. Geochim Cosmochim Acta 77(1):457–473CrossRefGoogle Scholar
  21. 21.
    Sparks DL, Jardine PM (1984) Comparison of kinetic equations to describe potassium–calcium exchange in pure and mixed systems. Soil Sci 138(2):115–122CrossRefGoogle Scholar
  22. 22.
    Low MJD (1960) Kinetics of chemisorption of gases on solids. Chem Rev 60(3):267–312CrossRefGoogle Scholar
  23. 23.
    Chien SH, Clayton WR (1980) Application of elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci Soc Am J 44(2):265–268CrossRefGoogle Scholar
  24. 24.
    Sparks DL (1986) Kinetics of reactions in pure and mixed systems. In: Sparks DL (ed) Soil physical chemistry, vol 1. CRC Press, Boca RatonGoogle Scholar
  25. 25.
    Söderlund M, Hakanen M, Lehto J (2015) Sorption of niobium on boreal forest soil. Radiochim Acta. doi: 10.1515/ract-2015-2429 Google Scholar
  26. 26.
    Sposito G (2008) The chemistry of soils. Oxford University Press, New YorkGoogle Scholar
  27. 27.
    Comans RNJ, Haller M, De Preter P (1990) Sorption of cesium on illite: Non-equilibrium behaviour and reversibility. Geochim Cosmochim Acta 55(1):433–440Google Scholar
  28. 28.
    Wang G, Staunton S (2010) Dynamics of caesium in aerated and flooded soils: experimental assessment of ongoing adsorption and fixation. Eur J Soil Sci 61(6):1005–1013CrossRefGoogle Scholar
  29. 29.
    Kaminski S, Richter T, Walser M, Lindner G (1994) Redissolution of cesium radionuclides from sediments of freshwater lakes due to biological degradation of organic matter. Radiochim Acta 66/67(1):433–436Google Scholar
  30. 30.
    Sharpley AN (1983) Effect of soil properties on the kinetics of phosphorus desorption. Soil Sci Soc Am J 47(3):462–467CrossRefGoogle Scholar
  31. 31.
    Yllera de Llano A, Hernández Benítez A, García Gutiérrez M (1998) Cesium sorption studies on Spanish clay materials. Radiochim Acta 82(1):275–278Google Scholar
  32. 32.
    Kyllönen J, Hakanen M, Lindberg A, Harjula R, Vehkamäki M, Lehto J (2014) Modeling of cesium sorption on biotite using cation exchange selectivity coefficients. Radiochim Acta 102(10):919–929CrossRefGoogle Scholar
  33. 33.
    Fuller AJ, Shaw S, Peacock CL, Trivedi D, Small JS, Abrahamsen LG, Burke IT (2014) Ionic strength and pH dependent multi-site sorption of Cs onto a micaceous aquifer sediment. Appl Geochem 40(1):32–42CrossRefGoogle Scholar
  34. 34.
    Brouwer E, Baeyens B, Maes A, Cremers A (1983) Cesium and rubidium ion equilibria in illite clay. J Phys Chem 87(7):1213–1219CrossRefGoogle Scholar
  35. 35.
    Staunton S, Levacic P (1999) Cs adsorption on the clay-sized fraction of various soils: effect of organic matter destruction and charge compensating cation. J Environ Radioact 45(2):161–172CrossRefGoogle Scholar
  36. 36.
    Stace AJ (2006) Estimating the hydration enthalpies of neutral alkali metal atoms. J Phys Chem B 110(42):20742–20744CrossRefGoogle Scholar
  37. 37.
    Merrill GN, Webb SP, Bivin DB (2003) Formation of Alkali Metal/Alkaline Earth Cation Water Clusters, M(H2O)1-6, M = Li+, Na+, K+, Mg2+, and Ca2+: an effective fragment potential (EFP) case study. J Phys Chem A 107(3):386–396CrossRefGoogle Scholar
  38. 38.
    Conway BE, Ayranci E (1999) Effective ionic radii and hydration volumes for evaluation of solution properties and ionic adsorption. J Sol Chem 28(3):163–192CrossRefGoogle Scholar
  39. 39.
    de Koning A, Konoplev AV, Comans RNJ (2007) Measuring the specific caesium sorption capacity of soils, sediments and clay minerals. Appl Geochem 22(1):219–229CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Mervi Söderlund
    • 1
  • Sinikka Virtanen
    • 1
  • Ilkka Välimaa
    • 1
  • Janne Lempinen
    • 1
  • Martti Hakanen
    • 1
  • Jukka Lehto
    • 1
  1. 1.Laboratory of Radiochemistry, Department of ChemistryUniversity of HelsinkiHelsinkiFinland

Personalised recommendations