Journal of Radioanalytical and Nuclear Chemistry

, Volume 309, Issue 2, pp 589–596 | Cite as

Retention of cesium from aqueous solutions using synthetic zeolites produced from power plant ash

  • Fotini Noli
  • Gabriela Buema
  • Panagiotis Misaelides
  • Maria Harja


New materials were synthesized from power plant ash, characterized by a variety of analytical techniques and studied as cesium sorbents from aqueous solutions. The Cs-determination was performed by γ-ray spectroscopy using 137Cs-labelled solutions under varying initial concentration, contact time, pH, presence of competing cations and temperature. The experimental sorption isotherms were modeled using the Langmuir and Freundlich equations and thermodynamic parameters (ΔG 0, ΔH 0, ΔS 0) were calculated from kinetics data obtained for 298, 308 and 323 K. The application of SEM/EDS, XRD, TGA and FTIR demonstrated the formation of stable zeolitic phases after the synthesis and support the proposed mechanism for the sorption process.


Power plant ash Zeolites Sorption Cesium-uptake Kinetics 



The support of Mrs G. Buema by the POSDRU CUANTUMDOC “Doctoral studies for European performances in research and innovation” project ID79407 funded by the European Social Fund and the Romanian Government is thankfully acknowledged.


  1. 1.
    Eisenbud M, Gesell T (1997) Environmental radioactivity from natural, industrial and military sources, 4th edn. Academic Press, San DiegoGoogle Scholar
  2. 2.
    Toxicological Profile for Cesium (2004) Agency for toxic substances and disease registry (ATSDR). U.S. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GAGoogle Scholar
  3. 3.
    Kumamoto Y, Aoyama M, Hamajima Y, Murata A, Kawano T (2015) Impact of Fukushima-derived radiocesium in the western North Pacific Ocean about ten months after the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact 140:114–122CrossRefGoogle Scholar
  4. 4.
    Cornel RM (1993) Adsorption of cesium on minerals: a review. J Radioanal Nucl Chem 171:483–500CrossRefGoogle Scholar
  5. 5.
    Mabit L, Benmansour M, Walling DE (2008) Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pb and 7Be for assessing soil erosion and sedimentation, a review. J Environ Radioact 99:1799–1807CrossRefGoogle Scholar
  6. 6.
    Report No. 154, Cesium-137 in the Environment: Radioecology and Approaches to Assessment and Management Radiation Protection: A Memoir of the National Radiological Protection Board, IP Address: (downloaded on 21/03/2014)Google Scholar
  7. 7.
    Choppin GR, Khankhasayev MK (1999) Chemical separation technologies and related methods of nuclear waste management: applications problems and research needs. Kluwer, DordrechtCrossRefGoogle Scholar
  8. 8.
    Borai EH, Harjula R, Malinen L, Paajanen A (2009) Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. J Hazard Mater 172:416–422CrossRefGoogle Scholar
  9. 9.
    Vereshchagina TA, Vereshchagin SN, Shishkina NN, Vasilieva NG, Solovyov LA, Anshits AG (2013) Microsphere zeolite materials derived from coal fly ash cenospheres as precursors to mineral-like aluminosilicate hosts for 135,137Cs and 90Sr. J Nucl Mater 437:11–18CrossRefGoogle Scholar
  10. 10.
    Yildiz B, Erten HN, Kis M (2011) The sorption behavior of Cs ion on clay minerals and zeolite in radioactive waste management: sorption kinetics and thermodynamics. J Radioanal Nucl Chem 288:475–483CrossRefGoogle Scholar
  11. 11.
    Shahwan T, Erten HN (2002) Thermodynamic parameters of Cs+ sorption on natural clays. J Radioanal Nucl Chem 253:115–120CrossRefGoogle Scholar
  12. 12.
    Ahmaruzzaman A (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36:327–363CrossRefGoogle Scholar
  13. 13.
    Wang S, Wu H (2006) Environmental-benign utilisation of fly ash as low-cost adsorbents. J Hazard Mater B136:482–501CrossRefGoogle Scholar
  14. 14.
    Bhangare RC, Tiwari MP, Ajmal Y, Sahu SK, Pandit GG (2014) Distribution of natural radioactivity in coal and combustion residues of thermal power plants. J Radioanal Nucl Chem 300:17–22CrossRefGoogle Scholar
  15. 15.
    Sahu SK, Tiwari M, Bhangare RC, Pandit GG (2014) Enrichment and particle size dependence of polonium and other naturally occurring radionuclides in coal ash. J Environ Radioact 138:421–426CrossRefGoogle Scholar
  16. 16.
    Reijnders L (2005) Disposal, uses and treatments of combustion ashes: a review. Resour Conserv Recycl 43:313–336CrossRefGoogle Scholar
  17. 17.
    Gross M, Soulard M, Caullet P, Patarin J, Saude I (2007) Synthesis of Faujasite from coal fly ashes under smooth temperature and pressure conditions: a cost saving process. Microporous Mesoporous Mater 104:67–76CrossRefGoogle Scholar
  18. 18.
    Fan Y, Zhang FS, Zhu J, Liu Z (2008) Effective utilization of waste ash from MSW and coal co-combustion power plant-Zeolite synthesis. J Hazard Mater 153:382–388CrossRefGoogle Scholar
  19. 19.
    Breck DW (1974) Zeolite molecular sieves. Wiley, New YorkGoogle Scholar
  20. 20.
    Breck DW, Eversoler WG, Miltont M, Reed I, Tthomas L (1956) Crystalline zeolites. I. The properties of a new synthetic zeolite, type A. JCAS 78:5963–5972CrossRefGoogle Scholar
  21. 21.
    Buema G, Noli F, Misaelides P, Harja M, Sutiman DM, Cretescu I (2013) Uranium removal from aqueous solutions by raw and modified thermal power plant ash. J Radioanal Nucl Chem 299:381–386CrossRefGoogle Scholar
  22. 22.
    Noli F, Buema G, Misaelides P, Harja M (2015) New materials synthesized from ash under moderate conditions for removal of toxic and radioactive metals. J Radioanal Nucl Chem 303:2303–2311Google Scholar
  23. 23.
    El-Naggar MR, El-Kamash AM, Dessouky MI, Ghonaim AK (2008) Two step method for preparation of NaA-X zeolite blend from fly ash for removal of cesium ions. J Hazard Mater 154:963–972CrossRefGoogle Scholar
  24. 24.
    Faghihian H, Iravani M, Moayed M, Ghannadi-Maragheh M (2013) Preparation of a novel PAN-zeolite nanocomposite for removal of Cs and Sr from aqueous solutions: kinetic, equilibrium and thermodynamic studies. Chem Eng J 222:41–48CrossRefGoogle Scholar
  25. 25.
    Pena Penilla R, Guerrero Bustos A, Elizalde SG (2006) Immobilization of Cs, Cd, Pb and Cr by synthetic zeolites from Spanish low-calcium coal fly ash. Fuel 85:823–832CrossRefGoogle Scholar
  26. 26.
    El-Kamash AM (2008) Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. J Hazard Mater 151:432–445CrossRefGoogle Scholar
  27. 27.
    Kapnisti M, Hatzidimitriou A, Noli F, Pavlidou E (2015) Investigation of Cesium uptake from aqueous solutions using new titanium phosphates ion-exchangers. J Radioanal Nucl Chem 303:2303–2311Google Scholar
  28. 28.
    Sheha RR, Metwally E (2007) Equilibrium isotherm modeling of cesium adsorption onto magnetic materials. J Hazard Mater 143:354–361CrossRefGoogle Scholar
  29. 29.
    Yavari R, Huang YD, Ahmadi SJ, Bagheri G (2010) Uptake behavior of titanium molybdophosphate for cesium and strontium. J Radioanal Nucl Chem 286:223–229CrossRefGoogle Scholar
  30. 30.
    EPA Test Method 1311–TCLPGoogle Scholar
  31. 31.
    Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295CrossRefGoogle Scholar
  32. 32.
    Freundlich HF (1906) Adsorption in solution. Phys Chem Soc 40:1361–1368Google Scholar
  33. 33.
    De Haro-Del Rio DA, Al-Joubori S, Kontogiannis O, Papadatos-Gigantes D, Ajayi O, Li C, Holmes CM (2015) The removal of caesium ions using supported clinoptilolite. J Hazard Mater 289:1–8CrossRefGoogle Scholar
  34. 34.
    Abdel Moamen OA, Ismail IM, Abdelmonem N, Rahman RA (2015) Factorial design analysis for optimizing the removal of cesium and strontium ions on synthetic nano-sized zeolite. J Taiwan Inst Chem Eng 55:133–144CrossRefGoogle Scholar
  35. 35.
    Wang TH, Li MH, Yeh WC, Wei YY, Teng SP (2008) Removal of cesium ions from aqueous solution by adsorption onto local Taiwan laterite. J Hazard Mater 160:638–642CrossRefGoogle Scholar
  36. 36.
    Fernandez-Jimenez A, Macphee DE, Lachowski EE, Palomo A (2005) Immobilization of cesium in alkaline activated fly ash matrix. J Nucl Mater 346:185–193CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Fotini Noli
    • 1
  • Gabriela Buema
    • 1
    • 2
  • Panagiotis Misaelides
    • 1
  • Maria Harja
    • 2
  1. 1.Department of ChemistryAristotle UniversityThessalonikiGreece
  2. 2.Faculty of Chemical Engineering and Environmental Protection“Gheorghe Asachi” Technical University of IasiIasiRomania

Personalised recommendations