Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 307, Issue 3, pp 2227–2230 | Cite as

Observation of attachment ratio of fission products on solution aerosol

  • Koichi Takamiya
  • Toru Tanaka
  • Shinnosuke Nitta
  • Satoshi Itosu
  • Shun Sekimoto
  • Yuichi Oki
  • Tsutomu Ohtsuki
Article

Abstract

Attachment behavior of fission products to solution aerosols has been observed to elucidate the role of chemical effects in the generation mechanism of fission-product aerosols. Primary aerosols generated from aqueous solution of sodium chloride or ammonium sulfate were passed through a fission-product chamber, and radioactive aerosols were generated by attaching fission products to the primary aerosol particles. Attachment ratios of the fission products on aerosols were estimated from activity measurements. It was found that the attachment ratio of the sodium chloride solution aerosol is larger than that of the ammonium sulfate solution aerosol.

Keywords

Radioactive aerosol Fission-product aerosol Attachment ratio of fission product 

Notes

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers 24110005 and 26286076.

References

  1. 1.
    Kaneyasu N, Ohashi H, Suzuki F, Okuda T, Ikemori F (2012) Sulfate aerosol as a potential transport medium of radiocesium from the Fukushima nuclear accident. Environ Sci Technol 46:5720–5726CrossRefGoogle Scholar
  2. 2.
    Miyamoto Y, Yasuda K, Magara M (2014) Size distribution of radioactive particles collected at Tokai, Japan 6 days after the nuclear accident. J Environ Radioact 132:1–7CrossRefGoogle Scholar
  3. 3.
    Doi T, Masumoto K, Toyoda A, Tanaka A, Shibata Y, Hirose K (2013) Anthropogenic radionuclides in the atmosphere observed at Tsukuba: characteristics of the radionuclides derived from Fukushima. J Environ Radioact 122:55–62CrossRefGoogle Scholar
  4. 4.
    Malá H, Rulík P, Bečková V, Mihalík J, Slezáková M (2013) Particle size distribution of radioactive aerosols after the Fukushima and the chernobyl accidents. J Environ Radioact 126:92–98CrossRefGoogle Scholar
  5. 5.
    Masson O, Ringer W, Malá H, Rulik P, Dlugosz-Lisiecka M, Eleftheriadis K, Meisenberg O, De Vismes-Ott A, Gensdarmes F (2013) Size distributions of airborne radionuclides from the Fukushima nuclear accident at several places in Europe. Environ Sci Technol 47:10995–11003CrossRefGoogle Scholar
  6. 6.
    Muramatsu H, Kawasumi K, Kondo T, Matsuo K, Itoh S (2015) Size-distribution of airborne radioactive particles from the Fukushima accident. J Radioanal Nucl Chem 303:1459–1463CrossRefGoogle Scholar
  7. 7.
    Monsanglant-Louvet C, Osmond M, Ferreux L, Liatimi N, Maulard A, Picolo JL, Marcillaud B, Gensdarmes F (2015) Production of reference sources of radioactive aerosols in filters for proficiency testing. Appl Radiat Isot 95:13–22CrossRefGoogle Scholar
  8. 8.
    Martin MJ (2014) Nuclear data sheets for A = 248. Nucl Data Sheets 122:377–409CrossRefGoogle Scholar
  9. 9.
    Covell DF (1959) Determination of gamma-ray abundance directly from total absorption peak. Anal Chem 31:1785–1790CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Koichi Takamiya
    • 1
  • Toru Tanaka
    • 1
  • Shinnosuke Nitta
    • 1
  • Satoshi Itosu
    • 1
  • Shun Sekimoto
    • 1
  • Yuichi Oki
    • 1
  • Tsutomu Ohtsuki
    • 1
  1. 1.Research Reactor InstituteKyoto UniversityOsakaJapan

Personalised recommendations