Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 307, Issue 3, pp 1961–1966 | Cite as

Experimental verification of mathematical efficiency modeling and true coincidence summing correction of the SAGe Well detector

  • Henrik Jäderström
  • Aderemi S. Adekola
  • Valery Atrashkevich
  • Wilhelm F. Mueller
Article
  • 131 Downloads

Abstract

The characterization and ray-tracing algorithm in ISOCS/LabSOCS has been extended to calculate full energy peak and total efficiencies for the Small Anode Germanium Well detector. The extension allows for true coincidence summing correction using the standard algorithm in the Genie 2000 software. The accuracy of the full energy peak efficiency calculation and the coincidence summing correction has been experimentally validated to be the same as for non-well detectors.

Keywords

Efficiency modeling True coincidence summing High purity germanium detector Well detector 

References

  1. 1.
    Adekola AS, Colaresi J, Douwen J, Mueller WF, Yocum KM (2014) Performance of a Small Anode Germanium Well detector. Nucl Instrum Meas A. doi: 10.1016/j.nima.2014.12.034 Google Scholar
  2. 2.
    LeBlanc PJ, Bronson F, Mueller WF, Russ W, Venkataraman R (2013) Mathematical efficiency calibration methods for high quality laboratory based gamma spectrometry systems. J Radioanal Nucl Chem 296(2):1045–1049 doi: 10.1007/s10967-012-2209-9 Google Scholar
  3. 3.
    Venkataraman R, Bronson F, Atrashkevich V, Field M, Young BM (2005) Improved detector response characterization method in ISOCS and LabSOCS. J Radioanal Nucl Chem 264:213–219CrossRefGoogle Scholar
  4. 4.
    Briesmeister JF (2000) MCNP—A General Monte Carlo N-Particle Transport Code version 4c. no LA-13709-M, Los Alamos National Laboratory. http://library.lanl.gov/cgi-bin/getfile?la-13709.htm
  5. 5.
    Agostinelli S, Allison J, Amako K, Apostolakis J, Araujoa H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia J, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenkod P, Dell’Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, Gómez Cadenas JJ, González I, Gracia Abril G, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones FW, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossov M, Kurashige H, Lamann E, Lampén T, Lara V, Lefebure V, Lei F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, Mora de Freitas P, Morita Y, Murakami K, Nagamatu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O’Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia MG, Ranjard F, Rybin A, Sadilov S, Di Salvo E, Santin G, Sasaki T, Savvas N, Sawada Y, Scherer S, Sei S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaev E, Safai Tehrani E, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch JP, Wenaus T, Williams DC, Wright D, Yamada T, Yoshida H, Zschiesche D (2003) Geant4—a simulation toolkit. Nucl Instrum Methods A 506:250–303CrossRefGoogle Scholar
  6. 6.
    Moens L, De Corte F, Simonits A, Xilei Lin, De Wispelaere A, De Donder J, Hoste J (1982) Calculation of the absolute peak efficiency of Ge and Ge(Li) detectors for different counting geometries. J Radioanal Nucl Chem 70:539–550CrossRefGoogle Scholar
  7. 7.
    Mueller WF, Bronson F, Field M, Morris K, Nakazawa D, Venkataraman R, Atrashkevich V (2009) Challenges and techniques to effectively characterize the efficiency of broad-energy germanium detectors at energies less than 45 keV. J Radioanal Nucl Chem. doi: 10.1007/s10967-009-0273-6 Google Scholar
  8. 8.
    Jäderström H, Mueller WF, Atrashkevich V, Adekola AS (2014) True coincidence summing correction and mathematical efficiency modeling of a well detector. Nucl Instrum Meas A. doi: 10.1016/j.nima.2014.08.032 Google Scholar
  9. 9.
    Moens L (1981) Doctorate Thesis, University of GentGoogle Scholar
  10. 10.
    DeCorte F (1987) Doctorate Thesis, University of GentGoogle Scholar
  11. 11.
    Kolotov VP, Atrashkevich V, Gelsema SJ (1996) Estimation of true coincidence correction for voluminous sources. J Radioanal Nucl Chem 210:183–196CrossRefGoogle Scholar
  12. 12.
    Kolotov VP, Koskelo MJ (1998) Testing of different true coincidence correction approaches for gamma-ray spectrometry of voluminous sources. J Radioanal Nucl Chem 233:95–100CrossRefGoogle Scholar
  13. 13.
    Russ W, Venkataraman R, Bronson F (2005) Validation testing of the Genie 2000 Cascade Summing Correction. J Radioanal Nucl Chem 264:193–197CrossRefGoogle Scholar
  14. 14.
    Zhu H, Morris K, Mueller W, Field M, Venkataraman R, Lamontagne J, Bronson F, Berlizov A (2009) Validation of true coincidence summing correction in Genie 2000 V3.2. J Radioanal Nucl Chem. doi: 10.1007/s10967-009-0148-x Google Scholar
  15. 15.
    Zhu H, Venkataraman R, Mueller W, Lamontagne J, Bronson F, Morris K, Berlizov A (2009) X-ray true coincidence summing correction in Genie 2000. Appl Radiat Isot 67:696–700CrossRefGoogle Scholar
  16. 16.
    Nudat 2.6 National nuclear data center Brookhaven national laboratory www.nndc.bnl.gov/nudat2. Accessed 10 Apr 2015
  17. 17.
    Mueller WF, Ilie G, Lange HJ, Rotty M, Russ WR (2013) In-situ measurement and analysis of naturally occurring radioactive material. In: Proceeding for the ANIMMA conference 2013Google Scholar
  18. 18.
    Venkataraman R, Bronson F, Atrashkevich V, Young BM, Field M (1999) Validation of in situ object counting system (ISOCS) mathematical efficiency calibration software. Nucl Instrum Methods A 422:450–454CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Henrik Jäderström
    • 1
  • Aderemi S. Adekola
    • 1
  • Valery Atrashkevich
    • 2
  • Wilhelm F. Mueller
    • 1
  1. 1.Canberra Industries Inc.MeridenUSA
  2. 2.MoscowRussia

Personalised recommendations