Gamma irradiation stability studies of coir pith: a lignocellulosic biosorbent for strontium

  • Harshala Parab
  • P. S. Remya Devi
  • Niyoti Shenoy
  • Sangita D. Kumar
  • Y. K. Bhardwaj
  • A. V. R. Reddy


The effects of gamma irradiation on a lignocellulosic biosorbent—coir pith were studied in view of its utilization for separation of metal ions of nuclear importance. The biosorbent was irradiated up to a dosage of 3.6 MGy using a 60Co source. Physicochemical changes induced by γ irradiation in coir pith, were investigated using fourier transform infrared spectroscopy, thermogravimetric and differential thermal analysis. Irradiation in air had negligible effect on the chemical structure of coir pith. However, irradiation in aqueous medium partially altered the chemical linkages in coir pith; which reflected in marginal decrease in its sorption capacity for strontium.


Gamma irradiation Lignocellulosic biosorbent Coir pith Physicochemical changes Strontium sorption 



Authors would like to thank Dr. M. N. Deo, HP&SRPD-BARC for FTIR analysis, Dr. Naina R. H and Mr. Bhupesh Kalekar, ACD-BARC for TG–DTA analysis and Dr. S. Keny, RPCD-BARC for AAS analysis. We thank Dr. B. N. Jagatap, Head, ACD and Director, Chemistry Group, BARC, India, for his encouragement and support.


  1. 1.
    Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026CrossRefGoogle Scholar
  2. 2.
    Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33:2469–2479CrossRefGoogle Scholar
  3. 3.
    Das N (2012) Remediation of radionuclide pollutants through biosorption—an overview. Clean 40:16–23Google Scholar
  4. 4.
    Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157:220–229CrossRefGoogle Scholar
  5. 5.
    Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28CrossRefGoogle Scholar
  6. 6.
    Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316CrossRefGoogle Scholar
  7. 7.
    Parab H, Joshi S, Shenoy N, Lali A, Sarma US, Sudersanan M (2006) Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith. Process Biochem 41:609–615CrossRefGoogle Scholar
  8. 8.
    Parab H, Joshi S, Shenoy N, Verma R, Lali A, Sudersanan M (2005) Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies. Bioresour Technol 96:1241–1248CrossRefGoogle Scholar
  9. 9.
    Parab H, Sudersanan M (2010) Engineering a lignocellulosic biosorbent—coir pith for removal of cesium from aqueous solutions: equilibrium and kinetic studies. Water Res 44:854–860CrossRefGoogle Scholar
  10. 10.
    Parab H, Shenoy N, Kumar SA, Kumar SD, Reddy AVR (2013) Removal of strontium from aqueous solutions using coir pith as biosorbent : kinetic and equilibrium studies. Int J Curr Res 5:3697–3704Google Scholar
  11. 11.
    Tan WT, Ooi ST, Lee CK (1993) Removal of chromium (VI) from solution by coconut husk and palm pressed fibers. Environ Technol 14:277–282CrossRefGoogle Scholar
  12. 12.
    Shimokawa T, Nakamura M, Nagasawa N, Tamada M, Ishihara M (2007) Effect of gamma-ray irradiation on enzymatic hydrolysis of spent corncob substrates from edible mushroom, enokitake (Flammulina velutipes) cultivation. Bull FFPRI 6:27–34Google Scholar
  13. 13.
    Sung YJ, Shin SJ (2011) Compositional changes in industrial hemp biomass (Cannabis sativa L.) induced by electron beam irradiation Pretreatment. Biomass Bioenergy 35:3267–3270CrossRefGoogle Scholar
  14. 14.
    Orozco RS, Hernández PB, Ramírez NF, Morales GR, Luna JS, Montoya AJC (2012) Gamma irradiation induced degradation of orange peels. Energies 5:3051–3063CrossRefGoogle Scholar
  15. 15.
    Andrews LS, Ahmedna M, Grodner RM, Liuzzo JA, Murano PS, Murano EA, Rao RM, Shane S, Wilson PW (1998) Food preservation using ionizing radiation. Rev Environ Contam Toxicol 154:1–53Google Scholar
  16. 16.
    Arvanitoyannis IS, Stratakos ACh, Tsarouhas P (2009) Irradiation applications in vegetables and fruits: a review. Crit Rev Food Sci Nutr 49:427–462CrossRefGoogle Scholar
  17. 17.
    Lacroix M, Ouattara B (2000) Combined industrial processes with irradiation to assure innocuity and preservation of food products—a review. Food Res Int 33:719–724CrossRefGoogle Scholar
  18. 18.
    Farkas J (1998) Irradiation as a method for decontaminating food—a review. Int J Food Microbiol 44:189–204CrossRefGoogle Scholar
  19. 19.
    Schnabel T, Huber H, Grünewald TA, Petutschnigg A (2015) Changes in mechanical and chemical wood properties by electron beam irradiation. Appl Surf Sci 332:704–709CrossRefGoogle Scholar
  20. 20.
    Sim SF, Mohamed M, Lu NALMI, Sarman NSP, Samsudin SNS (2012) Computer-assisted analysis of fourier transform infrared (FTIR) spectra for characterization of various treated and untreated agriculture biomass. Bioresources 7:5367–5380Google Scholar
  21. 21.
    Bodîrlâu R, Teacâ CA (2009) Fourier transform infrared spectroscopy and thermal analysis of lignocellulosic fillers treated with organic anhydrides. Rom J Phys 54:93–104Google Scholar
  22. 22.
    Liu T, Ma Y, Xue S, Shi J (2012) Modifications of structure and physicochemical properties of maize starch by γ-irradiation treatments. LWT—Food Sci Technol 46:156–163Google Scholar
  23. 23.
    Saha AK, Rath P, Bhatta D (2000) Influence of γ-irradiation on jute yarn. Indian J Fibre Text 25:271–276Google Scholar
  24. 24.
    Daniels T (1973) Thermal Analysis. Kogan Page Limited, LondonGoogle Scholar
  25. 25.
    Liu Y, Chen J, Wu X, Wang K, Su X, Chen L, Zhoua H, Xiongde X (2015) Insights into the effects of γ-irradiation on the microstructure, thermal stability and irradiation derived degradation components of microcrystalline cellulose (MCC). RSC Adv 5:34353–34363CrossRefGoogle Scholar
  26. 26.
    Tsubaki S, Iida H, Sakamoto M, Azuma JI (2008) Microwave heating of tea residue yields polysaccharides, polyphenols, and plant biopolyester. J Agric Food Chem 56:11293–11299CrossRefGoogle Scholar
  27. 27.
    Choi JI, Kim JK, Srinivasan P, Kim JH, Park HJ, Byun MW, Lee JW (2009) Comparison of gamma ray and electron beam irradiation on extraction yield, morphological and antioxidant properties of polysaccharides from tamarind seed. Radiat Phys Chem 78:605–609CrossRefGoogle Scholar
  28. 28.
    Despot R, Hasan M, Rapp AO, Brischke C, Humar M, Welzbacher CR, Ražem D (2012) In: Adrovic F (ed) Gamma Radiation, Ch 14. InTech publisher, CroatiaGoogle Scholar
  29. 29.
    Han YW, Lillehoj EB, Ciegler A (1981) Solubilization of lignocellulosic materials. US patent no. US4304649 AGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Harshala Parab
    • 1
  • P. S. Remya Devi
    • 1
  • Niyoti Shenoy
    • 1
  • Sangita D. Kumar
    • 1
  • Y. K. Bhardwaj
    • 2
  • A. V. R. Reddy
    • 1
  1. 1.Analytical Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Radiation Technology Development DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations