Journal of Radioanalytical and Nuclear Chemistry

, Volume 307, Issue 3, pp 2301–2306 | Cite as

Effects of gamma irradiation and Shewanella putrefaciens on the sorption of uranium by goethite

  • Jae-Kwang Lee
  • Seung-Yeop Lee
  • Jongtae Jeong
  • Min-Hoon Baik


Batch experiments were carried out to investigate the influence of gamma irradiation and an iron-reducing bacterium (Shewanella putrefaciens) on the sorption of uranium by goethite in an anoxic condition. Samples were irradiated using a Co-60 gamma source for 5 days at a dose rate of 2 Gy/h for a total dose of 230 Gy. The ionizing radiation and microbial activity may induce the reductive dissolution of goethite, which subsequently may influence the redox behavior of uranium in a deep geological environment. Moreover, gamma irradiation improves the microbial activity, which resulted in the increase of the sorption of uranium.


Gamma irradiation Goethite Sorption Shewanella putrefaciens Uranium 



This work was supported by the National Nuclear R&D program (2012M2A8A5025589) through the National Research Foundation (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) of Korea.


  1. 1.
    International Atomic Energy Agency (2012) The safety case and safety assessment for the disposal of radioactive waste, specific safety guide No. SSG-23. International Atomic Energy Agency, ViennaGoogle Scholar
  2. 2.
    Pusch R (2008) Geological storage of highly radioactive waste. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Amme M, Heras A, Betti M, Lang H, Stöckl M (2004) Effects of colloidal and dissolved silica on the dissolution of UO2 nuclear fuel in groundwater leaching tests. J Radioanal Nucl Chem 261:327–336CrossRefGoogle Scholar
  4. 4.
    Turner GD, Zachara JM, McKinley JP, Smith SC (1996) Surface-charge properties and UO2 2+ adsorption of subsurface smectite. Geochim Cosmochim Acta 60:3399–3414CrossRefGoogle Scholar
  5. 5.
    Wersin P (2008) Impact of Corrosion-derived Iron on the Bentonite Buffer within the KBS-3H Disposal Concept. SKB R-08-34, Svensk Kärnbränslehantering AB, StockholmGoogle Scholar
  6. 6.
    Baik MH, Kim SS, Lee JK, Lee SY, Kim GY, Yun ST (2010) Sorption of 14C, 99Tc, 137Cs, 63Ni, and 241Am onto a rock and a fracture-filling material from the Wolsong low- and intermediate-level radioactive waste repository, Gyeongju, Korea. J Radioanal Nucl Chem 283:337–345CrossRefGoogle Scholar
  7. 7.
    Cui D, Eriksen T (1998) Reactive transport of Sr, Cs and Tc through a column packed with fracture-filling material. Radiochim Acta 82:287–292CrossRefGoogle Scholar
  8. 8.
    Giménez J, Martínez M, Pablo JD, Rovira M, Duro L (2007) Arsenic sorption onto natural hematite, magnetite, and goethite. J Hazard Mater 141:575–580CrossRefGoogle Scholar
  9. 9.
    Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416CrossRefGoogle Scholar
  10. 10.
    Hansel CM, Benner SG, Neiss J, Dohnalkova A, Kukkadapu RK, Fendorf S (2003) Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochim Cosmochim Acta 67(16):2977–2992CrossRefGoogle Scholar
  11. 11.
    Ohnuki T, Isobe H, Yanase N, Nagano T, Sakamoto Y, Sekine K (1997) Changes in sorption characteristics of uranium during crystallization of amorphous iron minerals. J Nucl Sci Techol 34:1153–1158CrossRefGoogle Scholar
  12. 12.
    Spinks JWT, Woods RJ (1990) An introduction to radiation chemistry. Wiley, New YorkGoogle Scholar
  13. 13.
    Björkbacka Å, Hosseinpour S, Johnson M, Leygraf C, Josson M (2013) Radiation induced corrosion of copper for spent nuclear fuel storage. Radiat Phys Chem 92:80–86CrossRefGoogle Scholar
  14. 14.
    Raiko H (2005) Disposal canister for spent nuclear fuel-design report, POSIVA 2005-02. POSIVA OY, OlkiluotoGoogle Scholar
  15. 15.
    SKB (2009) Design Premises for a KBS-3 V Repository based on Results from the Safety Assessment SR-Can and Some Subsequent Analysis, SKB TR-09-22. Svensk Kärnbränslehantering AB, StockholmGoogle Scholar
  16. 16.
    Bhushan B, Srivastava RK, Kar KR (1975) Effect of gamma-ray irradiation on the sorption property of hydrous ferric oxide and ferric phosphate. J Radioanal Nucl Chem 25:233–238CrossRefGoogle Scholar
  17. 17.
    Brown AR, Wincott PL, LaVerne JA, Small JS, Vaughan DJ, Pimblott SM, Lloyd JR (2014) The impact of γ radiation on the bioavailability of Fe(III) minerals for microbial respiration. Environ Sci Technol 48:10672–10680CrossRefGoogle Scholar
  18. 18.
    Bank TL, Kukkadapu RK, Madden AS, Ginder-Vogel MA, Baldwin ME, Jardine PM (2008) Effects of gamma-sterilization on the physic-chemical properties of natural sediments. Chem Geol 251:1–7CrossRefGoogle Scholar
  19. 19.
    Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287Google Scholar
  20. 20.
    Allard Th, Calas G (2009) Radiation effects on clay mineral properties. Appl Clay Sci 43:143–149CrossRefGoogle Scholar
  21. 21.
    Abedini A, Daud AR, Hamid MAA, Othman NK (2014) Radiolytic formation of Fe3O4 nanoparticles: influence of radiation dose on structure and magnetic properties. Plos One 9:e90055CrossRefGoogle Scholar
  22. 22.
    dos Santos Afonso M, Di Rissio CD (2000) Model for dissolution or irradiated metal oxides: reactivity and structure. Radiat Phys Chem 58:261–265CrossRefGoogle Scholar
  23. 23.
    Holmboe M, Norrfors KK, Jonsson M, Wold S (2011) Effect of γ-radiation on radionuclides retention in compacted bentonite. Radiat Phys Chem 80:1371–1377CrossRefGoogle Scholar
  24. 24.
    Holmboe M, Jonsson M, Wold S (2012) Influence of γ-radiation on the reactivity of montmorillonite towards H2O2. Radiat Phys Chem 81:190–194CrossRefGoogle Scholar
  25. 25.
    Tripathi VS, Keny SJ, Bera S, Venkateswaran G (2012) Effect of gamma irradiation on chromate sorption over magnetite surface. Radiat Eff Deffect Solids 167:676–684CrossRefGoogle Scholar
  26. 26.
    Coninckx F, Schönbacher H, Bartolotta A, Onori S, Rosati A (1989) Alanine dosimetry as the reference dosimetric system in accelerator radiation environments. Appl Radiat Isot 40:977–983CrossRefGoogle Scholar
  27. 27.
    Viollier E, Inglett PW, Hunter K, Roychoudhury AN, Van Cappellen P (2000) The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl Chem 15:785–790Google Scholar
  28. 28.
    Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Jujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85CrossRefGoogle Scholar
  29. 29.
    Baik MH, Hyun SP, Cho WJ, Hahn PS (2004) Contribution of minerals to the sorption of U(VI) on granite. Radiochim Acta 92:663–669CrossRefGoogle Scholar
  30. 30.
    Payne TE, Davis JA, Wait TD (1994) Uranium retention by weathered schists-the role of iron minerals. Radiochim Acta 66(67):297–303Google Scholar
  31. 31.
    Yanase N, Nightingale T, Payne T, Duerden P (1991) Uranium distribution in mineral phases of rock by sequential extraction. Radiochim Acta 52/53:387–393CrossRefGoogle Scholar
  32. 32.
    Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851CrossRefGoogle Scholar
  33. 33.
    Thayer DW, Boyd G (1996) Inactivation of Shewanella putrefaciens by gamma irradiation of red meat and poultry. J Food Saf 16:151–160CrossRefGoogle Scholar
  34. 34.
    Li LY, Nakajima H, Nomura T (1998) Dose rate effectiveness and potentially lethal damage repair in mormal and double-strand break repair deficient murine cells by gamma-rays and 5-fluoouacil. Cancer Lett 123:227–232CrossRefGoogle Scholar
  35. 35.
    Werme L (1998) Design Premises for Canister for Spent Nuclear Fuel. Technical Report TR-95-02, Svensk Kärnbränslehantering AB, StockholmGoogle Scholar
  36. 36.
    Darfour B, Agbenyegah S, Ofosu DO, Asare IK (2014) Gamma irradiation of Tetrapleura tetraptera fruit as a post-harvest technique and its subsequent effect on some phytochemicals, free scavenging activity and physicochemical properties. Radiat Phys Chem 102:153–158CrossRefGoogle Scholar
  37. 37.
    Roden ER, Urrutia MM, Nann CJ (2000) Magnetite biomineralization induced by Shewanella oneidensis. Appl Environ Microbiol 66:1062–1065CrossRefGoogle Scholar
  38. 38.
    Lovley DR (1986) Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Appl Environ Microbiol 52:751–757Google Scholar
  39. 39.
    Lovley DR (1987) Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53:1536–1540Google Scholar
  40. 40.
    Gournis D, Mantaka-Marketou AE, Karakassides MA, Petridis D (2000) Effects of gamma-sterilization on the physic-chemical properties of natural sediments. Phys Chem Minerals 27:514–521CrossRefGoogle Scholar
  41. 41.
    Lee SY, Baik MH, Choi JW (2010) Biogenic formation and growth of Uraninite (UO2). Environ Sci Technol 44:8409–8414CrossRefGoogle Scholar
  42. 42.
    Guillaumont R, Fanghänel T, Fuger J, Grenthe I, Neck V, Palmer DA, Rand MH (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium, chemical thermodynamics series, vol 5. Elsevier, ParisGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Jae-Kwang Lee
    • 1
  • Seung-Yeop Lee
    • 1
  • Jongtae Jeong
    • 1
  • Min-Hoon Baik
    • 1
  1. 1.Korea Atomic Energy Research InstituteDaejeonRepublic of Korea

Personalised recommendations