Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 308, Issue 3, pp 1055–1062 | Cite as

Elemental characterization of lignite from Afşin-Elbistan in Turkey by k 0-NAA

  • Marie Kubešová
  • Esra Orucoglu
  • Sevilay Haciyakupoglu
  • Sema Erenturk
  • Ivana Krausová
  • Jan Kučera
Article

Abstract

Twelve samples of lignite from several places and depths of the Kışlaköy open cast mine in the south eastern Turkey were characterized by k 0-NAA with emphasis on the potentially hazardous elements, such as As, Cd, Co, Cr, Mn, Ni, S, Sb, U. In total 39 elements were determined at least in some of the samples. The results showed a low quality and elemental inhomogeneity of the lignite material, which is used in the nearby thermal power plant. Mean values of element contents were also compared with older data from the same locality and to the world average lignite composition.

Keywords

Lignite Afşin Elbistan Neutron activation analysis k0 Standardization 

Notes

Acknowledgments

This work was supported by the Czech Science Foundation within Project P108/12/G108.

References

  1. 1.
    Gürbüz-Beker Ü, Küçükbayrak S, Özer A (1998) Briquetting of Afşin-Elbistan lignite. Fuel Process Technol 55:117–127CrossRefGoogle Scholar
  2. 2.
    García-Pérez J, Pollán M, Boldo E, Pérez-Gómez B, Aragonés N, Lope V, Ramis R, Vidal E, López-Abente G (2009) Mortality due to lung, laryngeal and bladder cancer in towns lying in the vicinity of combustion installations. Sci Total Environ 407:2593–2602CrossRefGoogle Scholar
  3. 3.
    Finkelman RB (1994) Modes of occurrence of potentially hazardous elements in coal, levels of confidence. Fuel Process Technol 39:21–34CrossRefGoogle Scholar
  4. 4.
    Finkelman RB, Gross PMK (1994) The types of data needed for assessing the environmental and human health impacts of coal. Int J Coal Geol 40:91–101CrossRefGoogle Scholar
  5. 5.
    Gürdal G (2011) Abundances and modes of occurrence of trace elements in the Çan coals (Miocene), Çanakkale-Turkey. Int J Coal Geol 87:157–173CrossRefGoogle Scholar
  6. 6.
    Hu J, Zheng B, Finkelman RB, Wang B, Wang M, Li S, Wu D (2006) Concentration and distribution of sixty-one elements in coals from DPR Korea. Fuel 85:679–688CrossRefGoogle Scholar
  7. 7.
    Querol X, Fernandes-Turiel JL, Lopez-Soler A (1995) Trace elements in coal and their behaviour during combustion in a large power station. Fuel 74:331–343CrossRefGoogle Scholar
  8. 8.
    Lemly AD (2002) Symptoms and implications of selenium toxicity in fish: the Belews Lake case example. Aquat Toxicol 57:39–49CrossRefGoogle Scholar
  9. 9.
    Peltier GL, Wright MS, Hopkins WA, Meyer JL (2009) Accumulation of trace elements and growth responses in Corbicula fluminea downstream of a coal-fired power plant. Ecotoxicol Environ Saf 72:1384–1391CrossRefGoogle Scholar
  10. 10.
    Yudovich YE, Ketris MP (2006) Selenium in coal: a review. Int J Coal Geol 67:112–126CrossRefGoogle Scholar
  11. 11.
    Diehl SF, Goldhaber MB, Koenig AE, Lowers HA, Ruppert LF (2012) Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals: evidence for multiple episodes of pyrite formation. Int J Coal Geol 94:238–249CrossRefGoogle Scholar
  12. 12.
    Dai S, Ren D, Chou C, Finkelman RB, Seredin VV, Zhou Y (2012) Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization. Int J Coal Geol 94:3–21CrossRefGoogle Scholar
  13. 13.
    Zheng B, Ding Z, Huang R, Zhu J, Yu X, Wang A, Zhou D, Mao D, Su H (1999) Issues of health and disease relating to coal use in southwestern China. Int J Coal Geol 40:119–132CrossRefGoogle Scholar
  14. 14.
    Kirby J, Maher W, Harasti D (2001) Changes in selenium, copper, cadmium, and zinc concentrations in Mullet (Mugil cephalus) from the Southern Basin of Lake Macquarie, Australia, in response to alteration of coal-fired power station fly ash handling. Arch Environ Contam Toxicol 41:171–181CrossRefGoogle Scholar
  15. 15.
    Karayigit AH, Gayer RA (2000) Trace Elements in a pliocene-pleistocene lignite profile from the Afsin-Elbistan field, Eastern Turkey. Energy Sources 22:13–21CrossRefGoogle Scholar
  16. 16.
    Öztürk N, Özdogan S (2000) Preliminary analysis of radionuclides in Afsin-Elbistan lignite samples. J Radioanal Nucl Chem 245:653–657CrossRefGoogle Scholar
  17. 17.
    Schobert H H (1995) Lignites of North America. Elsevier, 1995Google Scholar
  18. 18.
    Yorukoglu M (1991) Afsin-Elbistan projesi ve TKI kurumu AELI Muessesesinde madencilik calısmaları. Turk Min J 30:13–29Google Scholar
  19. 19.
    Akbulut I, Aksoy T, Caglan D, Olmez T (2007) Afsin-Elbistan Kıslakoy open cast coal mine slope stability study (in Turkish). Report. The Mineral Research and Exploration Institute of Turkey, AnkaraGoogle Scholar
  20. 20.
    Altun NE, Hiçyilmaz C, Hwang JY, Suat Bağci A, Kök MV (2006) Oil shales in the world and Turkey; reserves, current situation and future prospects: a review. Oil Shale 23:211–227Google Scholar
  21. 21.
    Ural S (2005) Comparison of fly ash properties from Afsin-Elbistan coal basin, Turkey. J Hazard Mater B 119:85–92CrossRefGoogle Scholar
  22. 22.
    Tutluoglu L, Oge IF, Karpuz C (2011) Two and three dimensional analysis of a slope failure in a lignite mine. Comput Geosci 37:232–240CrossRefGoogle Scholar
  23. 23.
    Dogru AR, Gaines AF, Gokcen NS, Gokcen SL, Wolf M (1988) The Elbistan lignite field. Int J Geol 10:193–201CrossRefGoogle Scholar
  24. 24.
    IAEA (2004) Soil sampling for environmental contaminants. IAEA, ViennaGoogle Scholar
  25. 25.
    NIST Certificates of Analysis, 1991–2004. http://ts.nist.gov/measurementservices/referencematerials/index.cfm
  26. 26.
    Kubešová M, Kučera J, Fikrle M (2011) A new monitor set for the determination of flux parameters in short-time k 0-NAA. Nucl Instrum Methods A 656:61–64CrossRefGoogle Scholar
  27. 27.
    Kubešová M, Krausová I, Kučera J (2011) Verification of k 0-NAA results at the LVR-15 reactor in Řež with the use of Au + Mo + Rb(+Zn) monitor set. J Radioanal Nucl Chem 300:473–480CrossRefGoogle Scholar
  28. 28.
    Kayzero for Windows, Version 2, User’s Manual November 2005, http://www.kayzero.com/KfW%20Manual%20V1.pdf. Accessed 1 May 2015
  29. 29.
    De Corte F, Simonits A (1994) Vademecum for k0 users. DSM Res, GeleenGoogle Scholar
  30. 30.
    De Corte F (1987) The k0-standardization method. A move to the optimization of neutron activation analysis. University of Gent, BelgiumGoogle Scholar
  31. 31.
    ISO Guide 13528 (2005) Statistical methods for use in proficiency testing by interlaboratory comparisons. ISO, GenevaGoogle Scholar
  32. 32.
    Kubešová M, Kučera J (2010) Validation of k0 standardization in neutron activation analysis—the use of Kayzero for Windows programme at the Nuclear Physics Institute. Řež Nucl Instrum Methods A 622:403–406CrossRefGoogle Scholar
  33. 33.
    Kubešová M, Kučera J (2011) Comparison of Kayzero for Windows and k0-IAEA software packals for k 0 standardization in neutron activation analysis. Nucl Instrum Methods A 654:206–212CrossRefGoogle Scholar
  34. 34.
    Kubešová M, Kučera J (2012) Inconsistencies of neutron flux parameters for k0 standardization in neutron activation analysis determined with the use of Au + Zr and Au + Mo + Cr monitor sets at the LVR-15 reactor in Řež. J Radioanal Nucl Chem 293:665–674CrossRefGoogle Scholar
  35. 35.
    Statistica™ (2014) Version 12 SP2 for Windows. StatSoft CR Ltd, PragueGoogle Scholar
  36. 36.
    Karayigit AI, Gayer RA, Querol X, Onacak T (2000) Contents of major and trace elements in feed coals from Turkish coal-fired power plants. Int J Coal Geochem 44:169–184CrossRefGoogle Scholar
  37. 37.
    Bouška V, Pešek J (1999) Quality parameters of lignite of the North Bohemian Basin in the Czech Republic in comparison with the world average lignite. Int J Coal Geol 40:211–235CrossRefGoogle Scholar
  38. 38.
    Smolík J, Schwarz J, Veselý V, Sýkorová I, Kučera J, Havránek V (2000) Influence of calcareous sorbents on particulate emissions from fluidized bed combustion of lignite. Aerosol Sci Technol 33:544–556CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Marie Kubešová
    • 1
  • Esra Orucoglu
    • 2
  • Sevilay Haciyakupoglu
    • 3
  • Sema Erenturk
    • 3
  • Ivana Krausová
    • 1
  • Jan Kučera
    • 1
  1. 1.Nuclear Physics Institute ASCRŘežCzech Republic
  2. 2.Faculty of MinesIstanbul Technical UniversityMaslakTurkey
  3. 3.Energy InstituteIstanbul Technical UniversityMaslakTurkey

Personalised recommendations