In-house preparation of macroaggregated albumin (MAA) for 68Ga labeling and its comparison with commercially available MAA

  • Akanksha Jain
  • Suresh Subramanian
  • Usha Pandey
  • Haladhar Dev Sarma
  • Ramu Ram
  • Ashutosh Dash


99mTc labeled macroaggregated albumin (MAA) is used worldwide for SPECT imaging of lungs, using commercially available MAA kits. An attempt was made to indigenously prepare MAA for radiolabeling with 68Ga, for PET imaging. MAA particles (59.9 ± 18.1 µm) were successfully prepared in-house and radiolabeled with 68Ga. Retention of in-house synthesized 68Ga-MAA in lungs of Swiss mice (71.6 ± 2.1 %ID) was similar to that of 68Ga-MAA prepared using commercial kits (83.5 ± 2.3 %ID). In vivo Cherenkov luminescent imaging of in-house prepared 68Ga-MAA in Swiss mice at 15 min and 60 min p.i. showed maximum retention of activity in lungs and negligible leaching into liver.


68Ga Macroaggregated albumin Positron emission tomography (PET) Cherenkov imaging 



Research at the Bhabha Atomic Research Centre (BARC) is part of the ongoing activities of the Department of Atomic Energy, India and is fully supported by government funding. The authors express their sincere thanks to Dr. K.L. Ramakumar, Director, Radiochemistry & Isotope Group, BARC for his support and encouragement. Thanks are also due to Dr. Rubel Chakravarty, Isotope Production & Applications Division, BARC for providing 68GaCl3 from the in-house generator and to Dr. D.K. Maurya, Radiation Biology & Health Sciences Division, BARC for his help in carrying out particle size analysis.


  1. 1.
    Kratz F (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132:171–183CrossRefGoogle Scholar
  2. 2.
    Ahmed OE, Samy WM, Elgindy NA (2012) Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 157:168–182CrossRefGoogle Scholar
  3. 3.
    Elsadek B, Kratz F (2012) Impact of albumin on drug delivery-new applications on the horizon. J Control Release 157:4–28CrossRefGoogle Scholar
  4. 4.
    Wunder A, Muller-Ladner U, Stelzer EH, Funk J, Neumann E, Steble G, Pap T, Sinn H, Gay S, Fiebn C (2003) Albumin-based drug delivery as novel therapeutic approach for rheumatoid arthritis. J Immunol 170:4793–4801CrossRefGoogle Scholar
  5. 5.
    Miniati M, Sostman HD, Gottschalk A, Monti S, Pistolesi M (2008) Perfusion lung scintigraphy for the diagnosis of pulmonary embolism: a reappraisal and review of the prospective investigative study of acute pulmonary embolism diagnosis methods. Semin Nucl Med 38:450–461CrossRefGoogle Scholar
  6. 6.
    Worsley DF, Alavi A (2003) Radionuclide imaging of acute pulmonary embolism. Semin Nucl Med 33:259–278CrossRefGoogle Scholar
  7. 7.
    Charidra R, Shamoun J, Braunstein P, DuHov OL (1974) Clinical evaluation of an instant kit for preparation of 99mTc-MAA for lung scanning. J Nucl Med 14:702–705Google Scholar
  8. 8.
    Ziegler SI (2005) Positron emission tomography: principles, technology and recent developments. Nucl Phys A 752:679c–687cCrossRefGoogle Scholar
  9. 9.
    Rangarajan V, Purandare NC, Sharma AR, Shah S (2008) PET/CT: current status in India. Indian J Radiol Imaging 18:290–294CrossRefGoogle Scholar
  10. 10.
    Rösch F (2013) Past, present and future of 68Ge/68Ga generators. Appl Radiat Isot 76:24–30CrossRefGoogle Scholar
  11. 11.
    Goodwin DA, Ransone CM, Diamanti CI, McTigue M (1994) Rapid synthesis and quality control of 68Ga-labeled chelates for clinical use. Nucl Med Biol 21:897–899CrossRefGoogle Scholar
  12. 12.
    Even GA, Green MA (1989) Gallium-68-labeled macroaggregated human serum albumin, 68Ga-MAA. Int J Rad Appl Instrum B 16:319–321CrossRefGoogle Scholar
  13. 13.
    Hayes RL, Carlton JE, Kuniyasu Y (1981) A new method for labeling microspheres with Ga-68. Eur J Nucl Med 6:531–533CrossRefGoogle Scholar
  14. 14.
    Mathias CJ, Green MA (2008) Convenient route to [68Ga]Ga-MAA for use as a particulate PET perfusion tracer. Appl Radiat Isot 66:1910–1912CrossRefGoogle Scholar
  15. 15.
    Maus S, Buchholz HG, Ament S, Brochhausen C, Bausbacher N, Schreckenberger M (2011) Labelling of commercially available human serum albumin kits with 68Ga as surrogates for 99mTc-MAA microspheres. Appl Radiat Isot 69:171–175CrossRefGoogle Scholar
  16. 16.
    Hnatowich DJ (1976) Labeling of tin-soaked albumin microspheres with Ga-68. J Nucl Med 17:57–60Google Scholar
  17. 17.
    Maziere B, Steinling C, Comar M (1986) Stable labeling of serum albumin microspheres with gallium-68. Appl Radiat Isot 37:360–361CrossRefGoogle Scholar
  18. 18.
    Chakravarty R, Shukla R, Ram R, Venkatesh M, Dash A, Tyagi AK (2010) Nanoceria-PAN composite- based advanced sorbent material: a major step forward in the field of clinical grade 68Ge/68Ga generator. Appl Mater Interfaces 2:2069–2075CrossRefGoogle Scholar
  19. 19.
    Chakraborty S, Chakravarty R, Dash A, Pillai MRA (2013) The practicality of nanoceria-PAN-based 68Ge/68Ga generator toward preparation of 68Ga-labeled cyclic RGD dimer as a potential PET radiotracer for tumor imaging. Cancer Biother Radiopharm 28:77–83CrossRefGoogle Scholar
  20. 20.
    Al-Janabi MA, Yousif ZM, Kadim AH, Al-Salem AM (1983) A new technique for the preparation of ready-to-use macroaggregated albumin (MAA) kits to be labelled with 99mTc for lung scanning. Int J Appl Radiat Isot 34:1473–1478CrossRefGoogle Scholar
  21. 21.
    Hunta AP, Friera M, Johnson RA, Berezenkoc S, Perkinsa AC (2006) Preparation of Tc-99m-macroaggregated albumin from recombinant human albumin for lung perfusion imaging. Eur J Pharm Biopharm 62:26–31CrossRefGoogle Scholar
  22. 22.
    Chakravarty R, Chakraborty S, Ram R, Dash A, Pillai MRA (2013) Long-term evaluation of ‘BARC 68Ge/68Ga generator’ based on the nanoceria-polyacrylonitrile composite sorbent. Cancer Biother Radiopharm 28:631–637CrossRefGoogle Scholar
  23. 23.
    Wetzel R, Becker M, Behke J, Billwitz H, Bohm S, Ebert B, Hamann H, Krumbiegel J, Lassmann G (1980) Temperature behavior of human serum albumin. Eur J Biochem 104:469–478CrossRefGoogle Scholar
  24. 24.
    Thorek DLJ, Robertson R, Bacchus WA, Hahn J, Rothberg J, Beattie BJ, Grimm J (2012) Cerenkov imaging—a new modality for molecular imaging. Am J Nucl Med Mol Imaging 2:163–173Google Scholar
  25. 25.
    Boschi F, Calderan L, D’Ambrosio D, Marengo M, Fenzi A, Calandrino R, Sbarbati A, Spinelli AE (2011) In vivo 18F-FDG tumour uptake measurements in small animals using cerenkov radiation. Eur J Nucl Med Mol Imaging 38:120–127CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Akanksha Jain
    • 1
  • Suresh Subramanian
    • 1
  • Usha Pandey
    • 1
  • Haladhar Dev Sarma
    • 2
  • Ramu Ram
    • 1
  • Ashutosh Dash
    • 1
  1. 1.Isotope Production & Applications DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Radiation Biology and Health Sciences DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations