Synthesis of a theranostic agent: radioiodinated PEGylated PLGA-indocyanine capsules and in vitro determination of their bioaffinity on ovarian, cervical and breast cancer cells

  • Levent Akman
  • Fazilet Zumrut Biber Muftuler
  • Ahmet Bilgi
  • Ayfer Yurt Kilcar
  • Sevki Goksun Gokulu
  • Emin Ilker Medine
  • Mustafa Cosan Terek


The aim of current study is to synthesize a theranostic (multi-functional) agent, which is targeted on ovary, cervical and breast cancer types with diagnosis and treatment potential and to determine its bioaffinity by using in vitro methods. In conclusion; the designed compound (IPPP), which has fluorescence capability (from Indocyanine), encapsulated structure (with PEGylated PLGA), included an anticancer drug (Paclitaxel) for targeting and radionuclidic tracer (131I) content for tracing, has bioaffinity and promise for diagnosis and therapy on ovarian, cervical and breast cancer cell lines.


Indocyanine Encapsulation 131In vitro cell culture studies Paclitaxel 



This work is supported by Ege University Research Fund (contract no 2014-TIP-085). The authors thank to Emine Derviş, Tansu Doğan, Ezgi Sulu, Onur Yıldız, Göksu Işık, Alper Kan and Büşra Karatay for the technical assistance during the in vitro experiments.


  1. 1.
    Davis SS (1997) Biomedical applications of nanotechnology-implications for drug targeting and gene therapy. Trends Biotechnol 15:217–224CrossRefGoogle Scholar
  2. 2.
    Vij N, Min T, Marasigan R, Belcher CN, Mazur S, Ding H, Yong KT, Roy I (2010) Development of PEGylated PLGA nanoparticle for controlled and sustained drug delivery in cystic fibrosis. J Nanobiotechnol 8(22):1–18Google Scholar
  3. 3.
    Sahoo SK, Panyam J, Prabha S, Labhasetwar V (2002) Residual polyvinyl alcohol associated with poly (D, L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release 82:105–114CrossRefGoogle Scholar
  4. 4.
    Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–437CrossRefGoogle Scholar
  5. 5.
    McCarron PA, Hall M (2004) Pharmaceutical nanotechnology. Encycl Nanosci Nanotechnol 8:469–487Google Scholar
  6. 6.
    Li YP, Pei YY, Zhang XY, Gu ZH, Zhou ZH, Yuan WF, Zhou JJ, Zhu JH, Gao XJ (2001) PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J Control Release 71:203–211CrossRefGoogle Scholar
  7. 7.
    Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603CrossRefGoogle Scholar
  8. 8.
    Jeong B, Bae YH, Kim SW (2000) Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. J Control Release 63:155–163CrossRefGoogle Scholar
  9. 9.
    Mérian J, Gravier J, Navarro F, Texier I (2012) Fluorescent nanoprobes dedicated to in vivo imaging: from preclinical validations to clinical translation. Molecules 17:5564–5591CrossRefGoogle Scholar
  10. 10.
    Kuo WS, Chang YT, Cho KC, Chiu KC, Lien CH, Yeh CS (2012) Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials 33:3270–3278CrossRefGoogle Scholar
  11. 11.
    Saxena V, Sadoqi M, Shao J (2004) Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems. J Photochem Photobiol, B 74:29–38CrossRefGoogle Scholar
  12. 12.
    Saxena V, Sadoqi M, Shao J (2006) Polymeric nanoparticulate delivery system for indocyanine green: biodistribution in healthy mice. Int J Pharm 308:200–204CrossRefGoogle Scholar
  13. 13.
    Sheng Z, Hu D, Xue M, He M, Gong P, Cai L (2013) Indocyanine green nanoparticles for theranostic applications. Nano-Micro Lett 5:145–150CrossRefGoogle Scholar
  14. 14.
    Larush L, Magdassi S (2011) Formation of near-infrared fluorescent nanoparticles for medical imaging. Nanomedicine 6:233–240CrossRefGoogle Scholar
  15. 15.
    Gomes AJ, Lunardi LO, Marchetti JM, Lunardi CN, Tedesco AC (2006) Indocyanine green nanoparticles useful for photomedicine. Photomed Laser Surg 24:514–521CrossRefGoogle Scholar
  16. 16.
    Xu RX, Huang J, Xu JS, Sun D, Hinkle GH, Martin EW, Povoski SP (2009) Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer. J Biomed Opt 14:034020CrossRefGoogle Scholar
  17. 17.
    Patel RH, Wadajkar AS, Patel NL, Kavuri VC, Nguyen KT, Liu H (2012) Multifunctionality of indocyanine green-loaded biodegradable nanoparticles for enhanced optical imaging and hyperthermia intervention of cancer. J Biomed Opt 17:046003CrossRefGoogle Scholar
  18. 18.
    Miki K, Oride K, Inoue S, Kuramochi Y, Nayak RR, Matsuoka H, Harada H, Hiraoka M, Ohe K (2010) Ring-opening metathesis polymerization-based synthesis of polymeric nanoparticles for enhanced tumor imaging in vivo: synergistic effect of folate-receptor targeting and PEGylation. Biomaterials 31:934–942CrossRefGoogle Scholar
  19. 19.
    Bahmani B, Bacon D, Anvari B (2013) Erythrocyte-derived photo-theranostic agents: hybrid nano-vesicles containing indocyanine green for near infrared imaging and therapeutic applications. Sci Rep 3(2180):1–7Google Scholar
  20. 20.
    Alacam B, Yazici B, Intes X, Nioka S, Chance B (2008) Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods. Phys Med Biol 53:837–859CrossRefGoogle Scholar
  21. 21.
    Tsuchimochi M, Hayama K, Toyama M, Sasagawa I, Tsubokawa N (2013) Dual-modality imaging with 99mTc and fluorescent indocyanine green using surface-modified silica nanoparticles for biopsy of the sentinel lymph node: an animal study. EJNMMI Res 3:33–44CrossRefGoogle Scholar
  22. 22.
    Kisu I, Banno K, Yanokura M, Nogami Y, Umene K, Tsuji K, Masuda K, Ueki A, Kobayashi Y, Aoki D (2013) Indocyanine green fluorescence imaging in the pregnant cynomolgus macaque: childbearing is supported by a unilateral uterine artery and vein alone? Arch Gynecol Obstet 288:1309–1315CrossRefGoogle Scholar
  23. 23.
    Ma Y, Sadoqi M, Shao J (2012) Biodistribution of indocyanine green-loaded nanoparticles with surface modifications of PEG and folic acid. Int J Pharm 436:25–31CrossRefGoogle Scholar
  24. 24.
    Zheng M, Yue C, Ma Y, Gong P, Zhao P, Zheng C, Sheng Z, Zhang P, Wang Z, Cai L (2013) Single-step assembly of DOX/ICG loaded lipid–polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 7:2056–2067CrossRefGoogle Scholar
  25. 25.
    Zhong J, Yang S, Zheng X, Zhou T, Xing D (2013) In vivo photoacoustic therapy with cancer-targeted indocyanine green-containing nanoparticles. Nanomedicine 8:903–919CrossRefGoogle Scholar
  26. 26.
    Van der Poel HG, Buckle T, Brouwer OR, Olmos RAV, van Leeuwen FWB (2011) Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur Urol 60:826–833CrossRefGoogle Scholar
  27. 27.
    Brouwer OR, Buckle T, Vermeeren L, Klop WMC, Balm AJM, van der Poel HG, van Rhijn BW, Horenblas S, Nieweg OE, van Leeuwen FWB, Olmos RAV (2012) Comparing the hybrid fluorescent-radioactive tracer indocyanine green-99mTc-nanocolloid with 99mTc-nanocolloid for sentinel node identification: a validation study using lymphoscintigraphy and SPECT/CT. J Nucl Med 53:1034–1040CrossRefGoogle Scholar
  28. 28.
    Acharya S, Sahoo SK (2011) PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 63:170–183CrossRefGoogle Scholar
  29. 29.
    Thigpen JT (2000) Chemotherapy for advanced ovarian cancer: overview of randomized trials. Semin Oncol 27:11–16Google Scholar
  30. 30.
    Chang AY, Rubins J, Asbury R, Boros L, Hui LF (2001) Weekly paclitaxel in advanced non-small cell lung cancer. Semin Oncol 28:10–13CrossRefGoogle Scholar
  31. 31.
    Fonseca C, Simões S, Gaspar R (2002) Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Release 83:273–286CrossRefGoogle Scholar
  32. 32.
    Chen X, Gambhir SS, Cheon J (2011) Theranostic nanomedicine. Acc Chem Res 44:841CrossRefGoogle Scholar
  33. 33.
    Liu Y, Yu G, Tian M, Zhang H (2011) Optical probes and the applications in multimodality imaging. Contrast Media Mol Imaging 6:169–177Google Scholar
  34. 34.
    Jennings LE, Long NJ (2009) “Two is better than one”—probes for dual-modality molecular imaging. Chem Commun (Camb) 24:3511–3524CrossRefGoogle Scholar
  35. 35.
    Janib SM, Moses AS, MacKay JA (2010) Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 62:1052–1063CrossRefGoogle Scholar
  36. 36.
    Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22:1879–1903CrossRefGoogle Scholar
  37. 37.
    Saha GB (2010) Fundamentals of nuclear pharmacy. Springer, New YorkCrossRefGoogle Scholar
  38. 38.
    Unak P, Cetinkaya B (2005) Absorbed dose estimates at the cellular level for 131I. Appl Radiat Isot 62:861–869CrossRefGoogle Scholar
  39. 39.
    Blankenberg FG, Strauss HW (2002) Nuclear medicine applications in molecular imaging. J Magn Reson Imaging 16:352–361CrossRefGoogle Scholar
  40. 40.
    Muhammad HM, Saour KY, Naqishbandi AM (2009) Quantitative and qualitative analysis of plumbagin in the leaf and root of plumbago Europaea growing naturally in Kurdistan by HPLC introduction. J Pharm Sci 18:54–59Google Scholar
  41. 41.
    Ozkan M, Biber Muftuler FZ, Yurt Kilcar A, Medine EI, Unak P (2013) Isolation of hydroxytyrosol from olive leaves extract, radioiodination and investigation of bioaffinity using in vivo/in vitro methods. Radiochim Acta 101:585–593Google Scholar
  42. 42.
    Tekin V, Kozgus Guldu O, Yurt Kilcar A, Medine EI, Yavuz M, Unak P, Timur S (2015) Evaluation of Lawsonia inermis Origin Lawsone compound and its radioiodinated form via in vitro methods. J Radioanal Nucl Chem 303(1):701–708CrossRefGoogle Scholar
  43. 43.
    Medine IE, Unak P, Sakarya S, Toksöz F (2010) Enzymatic synthesis of uracil glucuronide, labeling with 125/131I, and in vitro evaluation on adenocarcinoma cells. Cancer Biother Radiopharm 25:335–344CrossRefGoogle Scholar
  44. 44.
    Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, Levy-Nissenbaum E, Radovic-Moreno AF, Langer R, Farokhzad OC (2007) Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28:869–876CrossRefGoogle Scholar
  45. 45.
    Medine EI, Odaci D, Gacal BN, Gacal B, Sakarya S, Unak P, Timur S, Yagci Y (2010) A new approach for in vitro imaging of breast cancer cells by anti-metadherin targeted PVA-pyrene. Macromol Biosci 10:657–663CrossRefGoogle Scholar
  46. 46.
    Ediz M, Avcıbaşı U, Unak P, Biber Muftuler FZ, Medine EI, Yurt Kilcar A, Demiroglu H, Gumuser FG, Sakarya S (2013) Investigation of therapeutic efficiency of bleomycin and bleomycin-glucuronide labeled with 131I on the cancer cell lines. Cancer Biother Radiopharm 28:310–319CrossRefGoogle Scholar
  47. 47.
    Cekic B, Yurt Kilcar A, Biber Muftuler FZ, Unak P, Medine EI (2012) Radiolabeling of methanol extracts of yarrow (Achillea millefolium l) in rats. Acta Cir Bras 27:294–300CrossRefGoogle Scholar
  48. 48.
    Fraker PJ, Speck JC (1978) Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril. Biochem Biophys Res Commun 80:849–857CrossRefGoogle Scholar
  49. 49.
    Bahmani B, Lytle CY, Walker AM, Gupta S, Vullev V, Anvari B (2013) Effects of nanoencapsulation and PEGylation on biodistribution of indocyanine green in healthy mice: quantitative fluorescence imaging and analysis of organs. Int J Nanomed 8:1609–1620Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Levent Akman
    • 1
  • Fazilet Zumrut Biber Muftuler
    • 2
  • Ahmet Bilgi
    • 1
  • Ayfer Yurt Kilcar
    • 2
  • Sevki Goksun Gokulu
    • 1
  • Emin Ilker Medine
    • 2
  • Mustafa Cosan Terek
    • 1
  1. 1.Department of Obstetrics and Gynecology, Faculty of MedicineEge UniversityBornovaTurkey
  2. 2.Department of Nuclear Applications, Institute of Nuclear SciencesEge UniversityBornovaTurkey

Personalised recommendations