Skip to main content
Log in

Investigation of an improved MAA-based polymer gel for thermal neutron dosimetry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The aims of this study are to increase the melting point of a normoxic Methacrylic acid-based polymer gel as well as investigation of its responses to thermal neutron and gamma irradiation. New polymer gel was named MAGIC-A (MAGIC and agarose). The R 2-dose sensitivity of MAGIC-A polymer gel for gamma irradiation was 0.381 ± 0.010 Gy−1 s−1 at 24 h post irradiation time which decreased to 0.180 ± 0.004 Gy−1 s−1 for thermal neutron irradiation. Results of this research confirmed the applicability of the MAGIC-A polymer gels for dosimetry of thermal neutrons as well as gamma irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Day MJ, Stein G (1950) Chemical effects of ionizing radiation in some gels. Nature 166:146–147

    Article  CAS  Google Scholar 

  2. Gore JC, Kang YS, Schulz RJ (1984) Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging. Phys Med Biol 29(10):1189–1197

    Article  CAS  Google Scholar 

  3. Fricke H, Morse S (1927) The chemical action of roentgen rays on dilute ferrosulphate solutions as a measure of dose. Am J Roentgenol Radium Ther Nucl Med 18:430–432

    CAS  Google Scholar 

  4. Maryanski MJ, Gore JC, Schulz RJ (1992) In:11th Annual Scientific Meeting of the Society of magnetic resonance in medicine, Berlin

  5. Fong PM, Keil DC, Does MD, Gore JC (2001) Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere. Phys Med Biol 46(12):3105–3113

    Article  CAS  Google Scholar 

  6. De Deene Y (2004) Essential characteristics of polymer gel dosimeters. J Phys Conf Ser 3:34–57

    Article  CAS  Google Scholar 

  7. Hilts M, Audet C, Duzenli C, Jirasek A (2000) Polymer gel dosimetry using X-ray computed tomography: a feasibility study. Phys Med Biol 45:2559–2571

    Article  CAS  Google Scholar 

  8. Mather ML, De Deene Y, Whittaker AK, Simon GP, Rutgers R, Baldock C (2002) Investigation of ultrasonic properties of PAG and MAGIC polymer gel dosimeters. Phys Med Biol 47(24):4397–4409

    Article  Google Scholar 

  9. Abtahi SM, Aghamiri SMR, Khalafi H (2014) Optical and MRI investigations of an optimized acrylamide-based polymer gel dosimeter. J Radioanal Nucl Chem 300:287–301

    Article  CAS  Google Scholar 

  10. Senden RJ, Jean PD, McAuley KB, Schreiner LJ (2006) Polymer gel dosimeters with reduced toxicity: a preliminary investigation of the NMR and optical dose-response using different monomers. Phys Med Biol 51:3301–3314

    Article  CAS  Google Scholar 

  11. Fernandes JP, Pastorello BF, de Araújo DB, Baffa O (2009) Formaldehyde increases MAGIC gel dosimeter melting point and sensitivity. J Phys Conf Ser 164(1):012004–012010

    Article  CAS  Google Scholar 

  12. Pavoni JF, Baffa O (2012) An evaluation of dosimetric characteristics of MAGIC gel modified by adding formaldehyde (MAGIC-f). Rad Meas 47(11–12):1074–1082

    Article  CAS  Google Scholar 

  13. Hill B, Bäck S, Lepage M, Simpson J, Healy B, Baldock C (2002) Investigation and analysis of ferrous sulfate polyvinyl alcohol (PVA) gel dosimeter. Phys Med Biol 47(23):4233–4246

    Article  CAS  Google Scholar 

  14. Currier B, Munro JJ, Medichc DC (2013) Dosimetric characterization of the GammaClipTM 169Yb low dose rate permanent implant brachytherapy source for the treatment of nonsmall cell lung cancer postwedge resection. Med Phys 40(8):0807011–0807019

    Article  CAS  Google Scholar 

  15. Moutsatsos A, Petrokokkinos L, Karaiskos P, Papagiannis P, Georgiou E, Dardoufas K, Sandilos P, Torrens M, Pantelis E, Kantemiris I, Sakelliou L, Seimenis I (2009) Gamma Knife output factor measurements using VIP polymer gel dosimetry. Med Phys 36(9):4277–4287

    Article  CAS  Google Scholar 

  16. Gopishankar N, Vivekanandhan S, Rath GK, Kale SS, Senthilkumaran S, Sanjay T, Subramani V, Bisht RK, Mahapatra AK (2012) MAGAT gel and EBT2 film-based dosimetry for evaluating source plugging-based treatment plan in Gamma Knife stereotactic radiosurgery. J Appl Clin Med Phys 13(6):46–61

    Google Scholar 

  17. Novotny J Jr, Dvoak P, Spvaek V, Tintra J, Novotny J, Echak T (2002) Medical application of 3-D polymer gel dosemeter evaluated by nuclear magnetic resonance. Radiat Prot Dosim 101(1–4):399–402

    Article  CAS  Google Scholar 

  18. Gustavsson H, Back SAJ, Medin J, Grusell E, Olsson LE (2004) Linear energy transfer dependence of a normoxic polymer gel dosimeter investigated using proton beam absorbed dose measurements. Phys Med Biol 49:3847–3855

    Article  CAS  Google Scholar 

  19. Zeidan OA, Sriprisan SI, Lopatiuk-Tirpak O, Kupelian PA, Meeks SL, Anderson MD, Hsi WC, Li Z, Palta JR, Maryanski MJ (2010) Dosimetric evaluation of a novel polymer gel dosimeter for proton therapy. Med Phys 37(5):2145–2152

    Article  CAS  Google Scholar 

  20. Ramm U, Weber U, Bock M, Kramer M, Bankamp A, Damrau M, Thilmann C, Bottcher HD, Schad LR, Kraft G (2000) Three-dimensional BANGTM gel dosimetry in conformal carbon ion radiotherapy. Phys Med Biol 45:N95–N102

    Article  CAS  Google Scholar 

  21. Trapp JV, Partridge M, Hansen VN, Childs P, Bedford J, Warrington AP, Leach MO, Webb S (2004) The use of gel dosimetry for verification of electron and photon treatment plans in carcinoma of the scalp. Phys Med Biol 49(9):1625–1635

    Article  CAS  Google Scholar 

  22. da Silveira MC, Sampaio FGA, Petchevist PCD, de Oliveira AL, de Almeida A (2011) Mycosis Fungoides electron beam absorbed dose distribution using Fricke xylenol gel dosimetry. Nucl Instrum Methods B 269:3137–3140

    Article  CAS  Google Scholar 

  23. Pianoschi TA, Alva M, Santanna M, Baffa O, Nicolucci P (2010) MAGIC-f gel dosimetry for clinical electron beam. J Phys Conf Ser 250:012037

    Article  CAS  Google Scholar 

  24. Wuu CS, Schiff BP, Maryanski M, Liu T, Borzillary S, Weinberger J (2002) 3D dosimetry study of 188Re liquid balloon for intravascular brachytherapy using BANG polymer gel dosemeters. Radiat Prot Dosim 99(1–4):397–399

    Article  CAS  Google Scholar 

  25. Bartesaghi G, Burian J, Gambarini G, Marek M, Negri A, Viererbl L (2009) Evaluation of all dose components in the LVR-15 reactor epithermal neutron beam using Fricke gel dosimeter layers. Appl Radiat Isot 67:S199–S201

    Article  CAS  Google Scholar 

  26. Gambarini G, Bartesaghi G, Burian J, Carrara M, Marek M, Negri A, Pirola L, Viererbl L (2010) Fast-neutron dose evaluation in BNCT with Fricke gel layer detectors. Rad Meas 45:1398–1401

    Article  CAS  Google Scholar 

  27. UusiSimola J, Heikkinen S, Kotiluoto P, Serén T, Seppälä T, Auterinen I, Savolainen S (2007) MAGIC polymer gel for dosimetric verification in boron neutron capture therapy. J Appl Clin Med Phys 8(2):114–123

    Google Scholar 

  28. Venning AJ, Hill B, Brindha S, Healy BJ, Baldock C (2005) Investigation of the PAGAT polymer gel dosimeter using magnetic resonance imaging. Phys Med Biol 50:3875–3888

    Article  CAS  Google Scholar 

  29. Shrimpton PC (1981) Electron density values of various human tissues: in vitro Compton scatter measurements and calculated ranges. Phys Med Biol 26:907–911

    Article  CAS  Google Scholar 

  30. International Atomic Energy Agency (IAEA) (ed) (2000) Absorbed dose determination in external beam radiotherapy: an International Code of Practice for dosimetry based on standards of absorbed dose to water. Technical Reports Series 398, Vienna

  31. Horowitz YS, Freeman S (1978) Response of 6LiF and 7LiF thermoluminescent dosimeters to neutrons incorporating the thermoluminescent—linear energy transfer dependency. Nucl Instr Methods 157(2):393–396

    Article  CAS  Google Scholar 

  32. Knoll GF (2000) Radiation detection and measurement, 3rd edn. Wiley, New York

    Google Scholar 

  33. National Council on Radiation Protection and Measurements (NCRP) (ed) (1971) Protection against neutron radiation. NCRP, Washington, DC

  34. De Deene Y, Baldock C (2002) Optimization of multiple spin-echo sequences for 3D polymer gel dosimetry. Phys Med Biol 47:3117–3141

    Article  Google Scholar 

  35. Chiang CM, Hsieh BT, Shieh JI, Cheng KY, Hsieh LL (2013) An approach in exploring the fundamental dosimetric characteristics for a long shelf life irradiated acrylamide-based gel. J Radioanal Nucl Chem 298(2):1435–1445

    Article  CAS  Google Scholar 

  36. De Deene Y, Van de Walle R, Achten E, De Wagter C (1998) Mathematical analysis and experimental investigation of noise in quantitative magnetic resonance imaging applied in polymer gel dosimetry. Sig Process 70:85–101

    Article  Google Scholar 

  37. De Deene Y, Venning A, Hurley C, Healy BJ, Baldock C (2002) Dose-response stability and integrity of the dose distribution of various polymer gel dosimeters. Phys Med Biol 47(14):2459–2470

    Article  Google Scholar 

  38. Lepage M, Whittaker AK, Rintoul L, Back SA, Baldock C (2001) Modelling of post-irradiation events in polymer gel dosimeters. Phys Med Biol 46:2827–2839

    Article  CAS  Google Scholar 

  39. Baldock C, Lepage M, Back SA, Murry PJ, Jayasekera PM, Porter D, Kron T (2001) Dose resolution in radiotherapy gel dosimetry: effect of echo spacing in MRI pulse sequence. Phys Med Biol 46:449–460

    Article  Google Scholar 

  40. Baldock C, Burford RP, Billingham N, Wagner GS, Patval S, Badawi RD, Keevil SF (1998) Experimental procedure for the manufacture and calibration of polyacrylamide gel (PAG) for magnetic resonance imaging (MRI) radiation dosimetry. Phys Med Biol 43:695–702

    Article  CAS  Google Scholar 

  41. De Deene Y, Hurley C, Venning AJ, Vergote K, Mather ML, Healy BJ, Baldock C (2002) A basic study of some normoxic polymer gel dosimeters. Phys Med Biol 47:3441–3463

    Article  Google Scholar 

  42. Thavasi V, Bettens RPA, Leong LP (2009) Temperature and solvent effects on radical scavenging ability of phenols. J Phys Chem A 113:3068–3077

    Article  CAS  Google Scholar 

  43. Cronbach LJ (1951) Coefficient alpha and the internal structure of tests. Psychometrika 16(3):297–334

    Article  Google Scholar 

  44. Tukey J (1949) Comparing individual means in the analysis of variance. Biometrics 5(2):99–114

    Article  CAS  Google Scholar 

  45. Zhu X, Reese TG, Crowley EM, Fakhri GE (2010) Improved MAGIC gel for higher sensitivity and elemental tissue equivalent 3D dosimetry. Med Phys 37(1):183–188

    Article  CAS  Google Scholar 

  46. Chapiro A (1962) Radiation chemistry of polymeric systems. Wiley-Interscience, New York

    Google Scholar 

  47. Farajollahi AR, Bonnett DE, Tattam D, Greenk S (2000) The potential use of polymer gel dosimetry in boron neutron capture therapy. Phys Med Biol 45:N9–N14

    Article  CAS  Google Scholar 

  48. Wojnecki C, Green S (2001) A computational study into the use of polyacrylamide gel and A-150 plastic as brain tissue substitutes for boron neutron capture therapy. Phys Med Biol 46:1399–1405

    Article  CAS  Google Scholar 

  49. Uusi-Simola J, Savolainen S, Kangasmäki A, Heikkinen S (2003) Study of the relative dose-response of BANG-3R polymer gel dosimeters in epithermal neutron irradiation. Phys Med Biol 48:2895–2906

    Article  CAS  Google Scholar 

  50. Khan FM (2009) The physics of radiation therapy, 4th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  51. Rao M, Trivillin VA, Heber EM, de los Angeles Cantarelli M, Itoiz ME, Nigg DW, Rebagliati RJ, Batistoni D, Schwint AE (2004) BNCT of 3 cases of spontaneous head and neck cancer in feline patients. Appl Rad Isot 61(5):947–952

    Article  CAS  Google Scholar 

  52. Gonzalez SJ, Bonomi MR, Santa Cruz GA, Blaumann HR, Calzetta Larrieu OA, Menendez P, Jimenez Rebagliati R, Longhino J, Feld DB, Dagrosa MA, Argerich C, Castiglia SG, Batistoni DA, Liberman SJ, Roth BMC (2004) First BNCT treatment of a skin melanoma in Argentina: dosimetric analysis and clinical outcome. Appl Radiat Isot 61(5):1101–1105

    Article  CAS  Google Scholar 

  53. Menendez P, Roth BM, Pereira MD, Casal MR, Gonzalez SJ, Feld DB, Santa Cruz GA, Kessler J, Longhino J, Blaumann H, Jimenez Rebagliati R, Calzetta Larrieu OA, Fernandez C, Nievas SI, Liberman SJ (2009) BNCT for skin melanoma in extremities: updated Argentine clinical results. Appl Radiat Isot 67(7–8 Suppl):S50–S53

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Radiology and radiotherapy departments of Novin institute for their kind efforts in gamma irradiation and imaging. The assistance of Chemical-Physics Laboratory of the Faculty of Chemistry of Shahid Beheshti University is greatly appreciated. We would like to acknowledge the Atomic Energy Organization of Iran (AEOI) for their collaboration in neutron irradiation in thermal column of Tehran Research Reactor (TRR). Authors appreciate Mrs. Somayeh Saghamanesh for her useful help in English polishing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Abtahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abtahi, S.M., Zahmatkesh, M.H. & Khalafi, H. Investigation of an improved MAA-based polymer gel for thermal neutron dosimetry. J Radioanal Nucl Chem 307, 855–868 (2016). https://doi.org/10.1007/s10967-015-4469-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4469-7

Keywords

Navigation