Cross section of (n,2n) reaction on the low-abundance isotopes 156,158Dy at 13.5 and 14.8 MeV

  • Junhua Luo
  • Li An
  • Li Jiang


Activation cross-sections for the 156Dy(n,2n)155Dy and 158Dy(n,2n)157m+gDy reactions with low-abundance target isotopes (156Dy:0.056 %, 158Dy:0.095 %) were measured by means of the activation technique and a coaxial HPGe γ-ray detector at 13.5 and 14.8 MeV. Theoretical excitation functions were calculated using the nuclear-reaction codes EMPIRE-3.2 Malta and TALYS-1.6 with default parameters, at neutron energies varying from the reaction threshold to 20 MeV. The results were discussed and compared with some corresponding values found in the literature, with the evaluation data in ENDF/B-VII.1, JENDF-4.0, and JEFF-3.2 libraries, and with the estimates obtained from a published empirical formula based on the statistical model.


Dysprosium Activation method Cross sections 14 MeV neutrons Low-abundance target 



We would like to thank the Intense Neutron Generator group at Chinese Academy of Engineering Physics for performing the irradiations. This work was supported by the National Natural Science Foundation of China (Grant No. 11165007) and by the Key Project of Chinese Ministry of Education (No. 211184).


  1. 1.
    IAEA Nuclear Data Services,
  2. 2.
    CINDA-A (2000) The index to literature and computer files on microscopic neutron data. International Atomic Energy Agency, ViennaGoogle Scholar
  3. 3.
    Oms LA, Palms JM, Venugopala Rao P, Wood RE, Fink RW (1968) Activation cross sections of dysprosium for 14.4 MeV neutrons. Bull Am Phys Soc 13:1699 (CA9)Google Scholar
  4. 4.
    Dzysiuk N, Kadenko A, Kadenko I, Primenko G (2012) Measurement and systematic study of (n, x) cross sections for dysprosium (Dy), erbium (Er), and ytterbium (Yb) isotopes at 14.7 MeV neutron energy. Phys Rev C 86:034609CrossRefGoogle Scholar
  5. 5.
    Bari A (1972) 14.8 MeV neutron activation cross sections of rubidium, strontium, zirconium, niobium and rare-earth nuclides. Dissertation Abstracts B (Sci) 32:5091Google Scholar
  6. 6.
    Qaim SM (1974) Total (n,2n) cross sections and isomeric cross-section ratios at 14.7 MeV in the region of rare earths. Nucl Phys A 224:319CrossRefGoogle Scholar
  7. 7.
    Bari A (1982) 14.8 MeV neutron activation cross-sections for (n, p) and (n,α) reactions of some rare earth nuclides. J Radioanal Chem 75:189CrossRefGoogle Scholar
  8. 8.
    Coleman RF, Hawker BE, O’Connor LP, Perkin JL (1959) Cross sections for (n, p) and (n, α) reactions with 14.5 MeV neutrons. Proc Phys Soc 73:215CrossRefGoogle Scholar
  9. 9.
    Jaskola M, Osakiewicz W, Turkiewicz J, Wilhelmi Z, Zemlo L, Rogulski Z, Madej M, Stodolska A, Zych B, Glowacka L (1968) (n, p) reactions on heavy nuclei induced by 14 MeV neutrons. Nucl Phys A 110:11CrossRefGoogle Scholar
  10. 10.
    Khurana CS, Hans HS (1959) Measurements of (n, p), (n, α) and (n, 2n) total cross sections at 14 MeV. Nucl Phys 13:88CrossRefGoogle Scholar
  11. 11.
    Khurana CS, Hans HS (1960) Measurements of (n, p) and (n, α) total cross-sections at 14 MeV. Low Energy Nucl Phys Symp, Waltair 297 Google Scholar
  12. 12.
    Khurana CS, Govil IM (1965) The (n, x), (n, p) and (n, t cross-sections at 14.8 MeV. Nucl Phys 69:153CrossRefGoogle Scholar
  13. 13.
    Kong K, Wang Y, Yang J (1998) Cross sections for (n,2n), (n, p) and (n, α) reactions on rare-earth isotopes at 14.7 MeV. Appl Radiat Isot 49(12):152CrossRefGoogle Scholar
  14. 14.
    Luo J, Wang X, Liu Z, Tuo F, Kong X (2009) Activation cross-sections for 158Dy(n, p)158Tb, 156Dy(n, α)153Gd and 160Dy(n, p)160Tb reactions induced by neutrons at 14.7 MeV. Appl Radiat Isot 67:1892–1896CrossRefGoogle Scholar
  15. 15.
    Qaim SM (1976) Measurement of (n, p) reaction cross sections at 14.7 MeV using high-pressure liquid chromatography in the region of rare earths. Radiochem Radioanal Lett 25:335Google Scholar
  16. 16.
    Sakane H, Iida T, Takahashi A, Yamamoto H, Kawade K (1996) Measurement of formation cross section of short-lived nuclei by 14 MeV neutrons−Nd, Sm, Dy, Er, Yb. Report, INDC(JPN), 193:178/UGoogle Scholar
  17. 17.
    Weigel H, Michel R, Herr W (1975) Measurment of 14 MeV cross sections for (n, p), (n,α), (n,2n) and (n, np+pn+d) reactions in the elements Sc, Ni, Ge, Pd, Cd, Sm, Dy, Gd and Yb and determination of the effective n-energy spectrum. Radiochim Acta 22:11 (in German) Google Scholar
  18. 18.
    Wille RG, Fink RW (1960) Activation cross sections for 14.8 MeV neutrons and some new radioactive nuclides in the rare earth region. Phys Rev 118:242CrossRefGoogle Scholar
  19. 19.
    Antov A, Dobreva E, Ephtimov I, Nenoff N, Stancheva N (1983) On the determination of reaction cross-sections for 14 MeV neutrons. Bulgarian J Phys 10(6):601Google Scholar
  20. 20.
    Sakane H, Iida T, Takahashi A, Yamamoto H, Kawade K (1997) Measurement of cross sections producing short-lived nuclei by 14 MeV neutron. Conf Nucl Data Sci Technol Trieste 1:619Google Scholar
  21. 21.
    Luo J, Du L, Zhao J (2013) A method to determine fast neutron energies in large sample. Nucl Instrum MethODS B 298:61–65CrossRefGoogle Scholar
  22. 22.
    Koning A, Hilaire S, Goriely S (2013) “TALYS-1.6, A nuclear reaction program,” NL-1755 ZG Petten, The Netherlands,
  23. 23.
    Herman M, Oblozinsky P, Capote R, Trkov A, Zerkin V, Sin M, Carlson B (2013)
  24. 24.
    Kim, Herman, Oh, Oblozinsky (2011) ENDF/B-VII.1; Evaluated Nuclear Data File (ENDF), Database Version of December 22, 2011, servlet/E4sSearch2
  25. 25.
    Iwamoto N, Chiba S (2010) JENDL-4.0; Evaluated Nuclear Data File (ENDF), Database Version of 2010, servlet/E4sSearch2
  26. 26.
    Koning AJ, Rochman D (2012) JEFF-3.2; Evaluated Nuclear Data File (ENDF), Database Version of 2012, servlet/E4sSearch2
  27. 27.
    Wagner M, Vonach H, Pavlik A, Strohmaier B, Tagesen S, Martinez-Rico J (1990) Physik daten-physics data, evaluation of cross sections for 14 important neutron-dosimetry reactions, Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, in the Federal Republic of Germany. No. 13-5, KarlsruheGoogle Scholar
  28. 28.
    Luo J, An L, Jiang L, He L (2015) Cross sections for d−T neutron interaction with Neodymium isotopes. Radiat Phys Chem 109:63–69CrossRefGoogle Scholar
  29. 29.
    Nethaway DR (1978) The 93Nb(n,2n)92mNb cross section. J Inorg Nucl Chem 40:1285CrossRefGoogle Scholar
  30. 30.
    Pavlik A, Winkler H, Vonach H, Paulsen A, Liskin H (1982) Precise measurement of cross sections for the 90Zr(n,2n)89Zr reaction from threshold to 20 MeV. J Phys G 8:1283CrossRefGoogle Scholar
  31. 31.
    ENSDF (2015) (Evaluated Nuclear Structure Data File),
  32. 32.
    Luo J, An L, Jiang L (2015) Neutron-induced activation cross-sections on natural Cerium up to 20 MeV. J Radioanal Nucl Chem 305(2):691–700CrossRefGoogle Scholar
  33. 33.
    McCallum GJ, Coote GE (1975) Influence of source-detector distance on relative intensity and angular correlation measurements with Ge(Li) spectrometers. Nucl Instrum Methods 130:189CrossRefGoogle Scholar
  34. 34.
    Zhou F, Zhang Y, Luo J, Tuo F, Kong X (2007) Investigation of the correction for cascade radiation coincidence summing in the measurement of gamma spectrometry. High energy Phys Nucl Phys 31:487–491 (In Chinese) Google Scholar
  35. 35.
    Hubbell J H, Seltzer SM (2013) Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest, tab3.html
  36. 36.
  37. 37.
    Taylor JR (1982) An introduction to uncertainty analysis. University Science Books, Mill ValleyGoogle Scholar
  38. 38.
    Feshbach H, Kerman A, Koonin S (1980) The statistical theory of multi-step compound and direct reactions. Ann Phys 125:429CrossRefGoogle Scholar
  39. 39.
    Hauser W, Feshbach H (1952) The inelastic scattering of neutrons. Phys Rev 87:366CrossRefGoogle Scholar
  40. 40.
  41. 41.
    Koning J, Delaroche JP (2003) Local and global nucleon optical models from 1 keV to 200 MeV. Nucl Phys A 713:231CrossRefGoogle Scholar
  42. 42.
    Watanabe S (1958) High energy scattering of deuterons by complex nuclei. Nucl Phys 8:484CrossRefGoogle Scholar
  43. 43.
    Kalbach C (1986) Two-component exciton model: basic formalism away from shell closures. Phys Rev C 33:818CrossRefGoogle Scholar
  44. 44.
    Chatterjee S, Chatterjee A (1969) Single-particle behaviour in fast neutron (n,2n) reactions. Nucl Phys A 125:593–612CrossRefGoogle Scholar
  45. 45.
    Wen-deh Lu, Fink RW (1971) Applicability of the constant-nuclear-temperature approximation in statistical-model calculations of neutron cross sections at 14.4 MeV for medium-Z nuclei. Phys Rev C 4: 1173Google Scholar
  46. 46.
    Bychkov VM, Manokhin VN, Pashchenko AB, Plyashin VI (1980) INDC(CCP)-146, NDS, IAEAGoogle Scholar
  47. 47.
    Konobeyev AYu, Korovin YuA (1999) Semi-empirical systematics of (n,2n) reaction cross-section at the energy of 14.5 MeV. Nuovo Cimento A 112:1001–1009CrossRefGoogle Scholar
  48. 48.
    Habbani FI, Osman Khalda T (2001) Systematics for the cross-sections of the reactions (n, p), (n,α), and (n,2n) at 14.5 MeV neutrons. Appl Radiat Isotopes 54:283–290CrossRefGoogle Scholar
  49. 49.
    Luo J, Tuo F, Zhou F, Kong X (2008) Semi-empirical systematics for the cross-sections of the reactions (n,α), (n,p) and (n,2n) at 14.5 MeV neutrons on the basis of experimental data measured by Lanzhou University. Nucl Instrum Methods Bin 266(22):4862–4868CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Institute of Theoretical PhysicsHexi UniversityZhangyeChina
  2. 2.School of Physics and Electromechanical EngineeringHexi UniversityZhangyeChina
  3. 3.Institute of Nuclear Physics and ChemistryChinese Academy of Engineering PhysicsMianyangChina

Personalised recommendations