Incorporation of magnetism into the dihydroimidazole functionalized mesoporous silica for convenient U(VI) capture



A dihydroimidazole functionalized magnetic mesoporous silica with core–shell structure was fabricated, aiming to convenient remove U(VI) from aqueous solution. The batch sorption tests revealed that this material is indeed an effective U(VI) sorbent with fast sorption kinetics of less than 2 h, large sorption capacity of more than 100 mg/g at pH 5.5 ± 0.1, and desirable selectivity towards U(VI) ions over a range of competing metal ions. The sorbent can be readily separated from solution by simply adding an external magnetic field.


Dihydroimidazole Magnetic mesoporous silica Core–shell structure Uranium Sorption 



This work was supported by the Natural Science Foundation of China (Grants 21471153, 11275219, 91326202, and U1432103 and 91426302) and the “Strategic Priority Research program” of the Chinese Academy of Sciences (Grants XDA030104). This work is also supported by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Supplementary material

10967_2015_4391_MOESM1_ESM.doc (5 mb)
Supplementary material 1 (DOC 5101 kb)


  1. 1.
    Kharecha PA, Hansen JE (2013) Prevented mortality and greenhouse gas emissions from historical and projected nuclear power. Environ Sci Technol 47:4889–4895CrossRefGoogle Scholar
  2. 2.
    Sun Y, Shao D, Chen C, Yang S, Wang X (2013) Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environ Sci Technol 47:9904–9910CrossRefGoogle Scholar
  3. 3.
    Mellah A, Chegrouche S, Barkat M (2006) The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J Colloid Interface Sci 296:434–441CrossRefGoogle Scholar
  4. 4.
    Shawabkeh RA, Rockstraw DA, Bhada RK (2002) Copper and strontium adsorption by a novel carbon material manufactured from pecan shells. Carbon 40:781–786CrossRefGoogle Scholar
  5. 5.
    Monsallier JM, Schussler W, Buckau G, Rabung T, Kim JI, Jones D, Keepax R, Bryan N (2003) Kinetic investigation of Eu(III)-humate interactions by ion exchange resins. Anal Chem 75:3168–3174CrossRefGoogle Scholar
  6. 6.
    Wang XK, Zhou X, Du JZ, Hu WP, Chen CL, Chen YX (2006) Using of chelating resin to study the kinetic desorption of Eu(III) from humic acid-Al2O3 colloid surfaces. Surf Sci 600:478–483CrossRefGoogle Scholar
  7. 7.
    Chen CL, Li XL, Wang XK (2007) Application of oxidized multi-wall carbon nanotubes for Th(IV) adsorption. Radiochim Acta 95:261–266CrossRefGoogle Scholar
  8. 8.
    Shao DD, Jiang ZQ, Wang XK, Li JX, Meng YD (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO2 2+ from aqueous solution. J Phys Chem B 113:860–864CrossRefGoogle Scholar
  9. 9.
    Sun YB, Yang ST, Sheng GD, Guo ZQ, Tan XL, Xu JZ, Wang XK (2011) Comparison of U(VI) removal from contaminated groundwater by nanoporous alumina and non-nanoporous alumina. Sep Purif Technol 83:196–203CrossRefGoogle Scholar
  10. 10.
    Wang Y-L, Song L-J, Zhu L, Guo B-L, Chen S-W, Wu W-S (2014) Removal of uranium(VI) from aqueous solution using iminodiacetic acid derivative functionalized SBA-15 as adsorbents. Dalton Trans 43:3739–3749CrossRefGoogle Scholar
  11. 11.
    Tan XL, Wang XK, Fang M, Chen CL (2007) Sorption and desorption of Th(IV) on nanoparticles of anatase studied by batch and spectroscopy methods. Colloid Surf A-Physicochem Eng Asp 296:109–116CrossRefGoogle Scholar
  12. 12.
    Zeng H, Singh A, Basak S, Ulrich KU, Sahu M, Biswas P, Catalano JG, Giammar DE (2009) Nanoscale size effects on uranium(VI) adsorption to hematite. Environ Sci Technol 43:1373–1378CrossRefGoogle Scholar
  13. 13.
    Shi WQ, Yuan LY, Li ZJ, Lan JH, Zhao YL, Chai ZF (2012) Nanomaterials and nanotechnologies in nuclear energy chemistry. Radiochim Acta 100:727–736CrossRefGoogle Scholar
  14. 14.
    Wang J, Zheng S, Shao Y, Liu J, Xu Z, Zhu D (2010) Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci 349:293CrossRefGoogle Scholar
  15. 15.
    Ma ZC, Zhao DY, Chang YF, Xing ST, Wu YS, Gao YZ (2013) Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal. Dalton Trans 42:14261–14267CrossRefGoogle Scholar
  16. 16.
    Darmstadt H, Roy C, Kaliaguine S, Kim TW, Ryoo R (2003) Surface and pore structures of CMK-5 ordered mesoporous carbons by adsorption and surface spectroscopy. Chem Mater 15:3300–3307CrossRefGoogle Scholar
  17. 17.
    Thirumavalavan M, Wang YT, Lin LC, Lee JF (2011) Monitoring of the structure of mesoporous silica materials tailored using different organic templates and their effect on the adsorption of heavy metal ions. J Phys Chem C 115:8165–8174CrossRefGoogle Scholar
  18. 18.
    Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130:28–29CrossRefGoogle Scholar
  19. 19.
    Wang C, Tao SY, Wei W, Meng CG, Liu FY, Han M (2010) Multifunctional mesoporous material for detection, adsorption and removal of Hg2+ in aqueous solution. J Mater Chem 20:4635–4641CrossRefGoogle Scholar
  20. 20.
    Zhao YG, Li JX, Zhang SW, Wang XK (2014) Amidoxime-functionalized magnetic mesoporous silica for selective sorption of U(VI). RSC Adv 4:32710–32717CrossRefGoogle Scholar
  21. 21.
    Jiang W, Zhou Y, Zhang Y, Xuan S, Gong X (2012) Superparamagnetic Ag@Fe3O4 core-shell nanospheres: fabrication, characterization and application as reusable nanocatalysts. Dalton Trans 41:4594–4601CrossRefGoogle Scholar
  22. 22.
    Kalantari M, Kazemeini M, Arpanaei A (2013) Facile fabrication and characterization of amino-functionalized Fe3O4 cluster@SiO2 core/shell nanocomposite spheres. Mater Res Bull 48:2023–2028CrossRefGoogle Scholar
  23. 23.
    Yuan LY, Liu YL, Shi WQ, Li ZJ, Lan JH, Feng YX, Zhao YL, Yuan YL, Chai ZF (2012) A novel mesoporous material for uranium extraction, dihydroimidazole functionalized SBA-15. J Mater Chem 22:17019–17026CrossRefGoogle Scholar
  24. 24.
    Kim J, Lee JE, Lee J, Yu JH, Kim BC, An K, Hwang Y, Shin CH, Park JG, Kim J, Hyeon T (2006) Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128:688–689CrossRefGoogle Scholar
  25. 25.
    Deng YH, Deng CH, Qi DW, Liu C, Liu J, Zhang XM, Zhao DY (2009) Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin. Adv Mater 21:1377–1382CrossRefGoogle Scholar
  26. 26.
    Zhou CF, Wang YM, Cao Y, Zhuang TT, Huang W, Chun YA, Zhu JH (2006) Solvent-free surface functionalized SBA-15 as a versatile trap of nitrosamines. J Mater Chem 16:1520–1528CrossRefGoogle Scholar
  27. 27.
    Perez-Quintanilla D, del Hierro I, Fajardo M, Sierra I (2006) Adsorption of cadmium(II) from aqueous media onto a mesoporous silica chemically modified with 2-mercaptopyrimidine. J Mater Chem 16:1757–1764CrossRefGoogle Scholar
  28. 28.
    Levasseur B, Ebrahim AM, Bandosz TJ (2012) Interactions of NO2 with amine-functionalized SBA-15: effects of synthesis route. Langmuir 28:5703–5714CrossRefGoogle Scholar
  29. 29.
    Kang T, Park Y, Choi K, Lee JS, Yi J (2004) Ordered mesoporous silica (SBA-15) derivatized with imidazole-containing functionalities as a selective adsorbent of precious metal ions. J Mater Chem 14:1043–1049CrossRefGoogle Scholar
  30. 30.
    Vidya K, Gupta NM, Selvam P (2004) Influence of pH on the sorption behaviour of uranyl ions in mesoporous MCM-41 and MCM-48 molecular sieves. Mater Res Bull 39:2035–2048CrossRefGoogle Scholar
  31. 31.
    Saucedo I, Guibal E, Roulph C, Lecloirec P (1992) Sorption of uranyl ions by a modified chitosan-kinetic and equilibrium studies. Environ Technol 13:1101–1115CrossRefGoogle Scholar
  32. 32.
    Yuan LY, Liu YL, Shi WQ, Lv YL, Lan JH, Zhao YL, Chai ZF (2011) High performance of phosphonate-functionalized mesoporous silica for U(VI) sorption from aqueous solution. Dalton Trans 40:7446–7453CrossRefGoogle Scholar
  33. 33.
    Yuan LY, Bai ZQ, Zhao R, Liu YL, Li ZJ, Chu SQ, Zheng LR, Zhang J, Zhao YL, Chai ZF, Shi WQ (2014) Introduction of bifunctional groups into mesoporous silica for enhancing uptake of thorium(IV) from aqueous solution. ACS Appl Mater Interfaces 6:4786–4796CrossRefGoogle Scholar
  34. 34.
    Liu YL, Yuan LY, Yuan YL, Lan JH, Li ZJ, Feng YX, Zhao YL, Chai ZF, Shi WQ (2012) A high efficient sorption of U(VI) from aqueous solution using amino-functionalized SBA-15. J Radioanal Nucl Chem 292:803–810CrossRefGoogle Scholar
  35. 35.
    Wang XL, Yuan LY, Wang YF, Li ZJ, Lan JH, Liu YL, Feng YX, Zhao YL, Chai ZF, Shi WQ (2012) Mesoporous silica SBA-15 functionalized with phosphonate and amino groups for uranium uptake. Sci China-Chem 55:1705–1711CrossRefGoogle Scholar
  36. 36.
    Vidya K, Dapurkar SE, Selvam P, Badamali SK, Gupta NM (2001) The entrapment of UO2 2+ in mesoporous MCM-41 and MCM-48 molecular sieves. Microporous Mesoporous Mater 50:173–179CrossRefGoogle Scholar
  37. 37.
    Kim JH, Lee HI, Yeon J-W, Jung Y, Kim JM (2010) Removal of uranium(VI) from aqueous solutions by nanoporous carbon and its chelating polymer composite. J Radioanal Nucl Chem 286:129–133CrossRefGoogle Scholar
  38. 38.
    Zong P, Wang S, Zhao Y, Wang H, Pan H, He C (2013) Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions. Chem Eng J 220:45–52CrossRefGoogle Scholar
  39. 39.
    Fan F-L, Qin Z, Bai J, Rong W-D, Fan F-Y, Tian W, Wu X-L, Wang Y, Zhao L (2012) Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. J Environ Radioact 106:40–46CrossRefGoogle Scholar
  40. 40.
    Zhang X, Wang J, Li R, Dai Q, Liu L (2013) Removal of uranium (vi) from aqueous solutions by surface modified magnetic Fe3O4 particles. New J Chem 37:3914–3919CrossRefGoogle Scholar
  41. 41.
    Sadeghi S, Azhdari H, Arabi H, Moghaddam AZ (2012) Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J Hazard Mater 215:208–216CrossRefGoogle Scholar
  42. 42.
    Rezaei A, Khani H, Masteri-Farahani M, Rofouei MK (2012) A novel extraction and preconcentration of ultra-trace levels of uranium ions in natural water samples using functionalized magnetic-nanoparticles prior to their determination by inductively coupled plasma-optical emission spectrometry. Anal Methods 4:4107–4114CrossRefGoogle Scholar
  43. 43.
    Sadeghi S, Aboobakri E (2012) Magnetic nanoparticles with an imprinted polymer coating for the selective extraction of uranyl ions. Microchim Acta 178:89–97CrossRefGoogle Scholar
  44. 44.
    Zuo LM, Yu SM, Zhou H, Tian X, Jiang J (2011) Th(IV) adsorption on mesoporous molecular sieves: effects of contact time, solid content, pH, ionic strength, foreign ions and temperature. J Radioanal Nucl Chem 288:379–387CrossRefGoogle Scholar
  45. 45.
    Singer DM, Maher K, Brown GE (2009) Uranyl-chlorite sorption/desorption: evaluation of different U(VI) sequestration processes. Geochim Cosmochim Acta 73:5989–6007CrossRefGoogle Scholar
  46. 46.
    Preetha CR, Gladis JM, Rao TP, Venkateswaran G (2006) Removal of toxic uranium from synthetic nuclear power reactor effluents using uranyl ion imprinted polymer particles. Environ Sci Technol 40:3070–3074CrossRefGoogle Scholar
  47. 47.
    Marzotto A, Nicolini M, Braga F, Pinto G (1979) Complexes of imidazole with dioxouranium (VI) nitrate and acetate. Inorg Chim Acta 34:L295–L297CrossRefGoogle Scholar
  48. 48.
    Koshino N, Harada M, Nogami M, Morita Y, Kikuchi T, Ikeda Y (2005) A structural study on uranyl (VI) nitrate complexes with cyclic amides: N-n-butyl-2-pyrrolidone, N-cyclohexylmethyl-2-pyrrolidone, and 1,3-dimethyl-2-imidazolidone. Inorg Chim Acta 358:1857–1864CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyangChina
  2. 2.Laboratory of Nuclear Energy Chemistry, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations