Skip to main content
Log in

Activity ratios as a tool for studying uranium mobility at El Sela shear zone, southeastern Desert, Egypt

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The present work aims to integrating detailed geologic field studies with natural radionuclides activity ratios as a tool for studying uranium-mobility in three rock types at El Sela shear zone, southeastern Desert, Egypt. Natural radionuclides content have been measured by γ-ray spectrometry employing a shielded HPGe detector. This study revealed that 238U and some of its progenies were redistributed after the rock emplacements and subjections to several alteration processes. The acidic and alkaline alterations play their role in the redistribution of radionuclides in different rock types. The main alteration processes are the argillization, fluoritization, silicification and ferrugination with formation of visible U-mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Turhan Ş (2012) Estimation of possible radiological hazards from natural radioactivity in commercially-utilized ornamental and countertops granite tiles. Ann Nucl Energy 44:34–39

    Article  CAS  Google Scholar 

  2. Lahaye C, Guibert P, Bechtel F (2012) Uranium series disequilibrium detection and annual dose determination: a case study on Magdalenian ferruginous heated sandstones (La Honteyre, France). Radiat Meas 47:1–4

    Article  Google Scholar 

  3. Lee SY, Kim SJ, Baik MH (2008) Chemical weathering of granite under acid rainfall environment, Korea. Environ Geol 55:853–862

    Article  CAS  Google Scholar 

  4. Goldich SS (1938) A study in rock weathering. J Geol 46:17–58

    Article  CAS  Google Scholar 

  5. Bonotto DM, Andrews JN, Darbyshire DPF (2001) A laboratory study of the transfer of 234U and 238U during water–rock interactions in the Carnmenellis granite (Cornwall, England) and implications for the interpretation of field data. Appl Radiat Isot 54:977–994

    Article  CAS  Google Scholar 

  6. Ibrahim ME, Zalata AA, Assaf HS, Ibrahim IH, Rashed MA (2005) El Sella shear zone, South Eastern Desert, Egypt. Example of vein-type uranium deposit. In: The 9th international mining, petroleum and metallurgical engineering conference, pp 41–55

  7. Ibrahim TM, Amer TE, Ali KG, Omar SA (2007) Uranium Potentiality and its extraction from El Sela shear zone, south Eastern Desert Egypt. Fac Sci Minufia Univ XXI:1–18

    Google Scholar 

  8. Ali KG (2011) Structural control of El Sela granites and associated uranium deposits, south Eastern Desert. Arab J Geosci, Egypt. doi:10.1007/s12517-011-0489-y

    Google Scholar 

  9. Ramadan TM, Ibrahim TM, Said A, Baiumi MB (2013) Application of remote sensing in exploration for uranium mineralization in Gabal El Sela area, south Eastern Desert, Egypt. J Remote Sens Space Sci 16:199–210

    Google Scholar 

  10. Abdel Gawad AE, Orabi AH, Bayoumi MB (2014) Uranium evaluation and its recovery from microgranite dike at G. El Sela area, South Eastern Desert, Egypt. Arab J Geosci. doi:10.1007/s12517-014-1499-3

    Google Scholar 

  11. Gaafer I, Cuney M, Abdel Gawad AE (2014) Mineral chemistry of two-mica granite rare metals: impact of geophysics on the distribution of uranium mineralization at El Sela shear zone, Egypt. Open J Geol 4:137–160. doi:10.4236/ojg.2014.44011

    Article  Google Scholar 

  12. Shahin H.A (2014) Zr–Y–Nb–REE mineralization associated with microgranite and basic dykes at EL Sela shear zone, south Eastern Desert, Egypt. SpringerPlus 3:573. http://www.springerplus.com/content/3/1/573

  13. Chinnaesakki S, Bara SV, Sartandel SJ, Tripathi RM, Puranik VD (2012) Performance of HPGe gamma spectrometry system for the measurement of low level radioactivity. J Radioanal Nucl Chem. doi:10.1007/s10967-011-1607-8

    Google Scholar 

  14. Abdi MR, Faghihian H, Mostajaboddavati M, Hasanzadeh A, Kamali M (2006) Distribution of natural radionuclides and hot points in coasts of Hormozgan, Persian Gulf, Iran. J Radioanal Nucl Chem 270:319–324

    Article  CAS  Google Scholar 

  15. IAEA International Atomic Energy Agency (1987) Preparation and certification of IAEA gamma spectrometry reference materials, RGU-1, RGTh-1 and RGK-1. Report-IAEA/RL/148

  16. Anjos RM, Veiga R, Soares T, Santos AMA, Aguiar JG, Frascá MHBO, Brage JAP, Uzêda D, Mangia L, Facure A, Mosquera B, Carvalho C, Gomes PRS (2005) Natural radionuclide distribution in Brazilian commercial granites. Radiat Meas 39:245–253

    Article  CAS  Google Scholar 

  17. Stoulos S, Manolopoulou M, Papastefanou C (2003) Assessment of natural radiation exposure and radon exhalation from building materials in Greece. J Environ Radioact 69:225–240

    Article  CAS  Google Scholar 

  18. Turhan Ş, Gündüz L (2008) Determination of specific activity of 226Ra, 232Th and 40K for assessment of radiation hazards from Turkish pumice samples. J Environ Radioact 99:332–342

    Article  CAS  Google Scholar 

  19. Suckow A (2010) Chapter 9: analysis of radionuclides. Radioactivity in the environment 16: 363–406

  20. Pękala M, Kramers JD, Waber HN (2010) 234U/238U activity ratio disequilibrium technique for studying uranium mobility in the Opalinus clay at Mont Terri, Switzerland. Appl Radiat Isot 68:984–992

    Article  Google Scholar 

  21. Sutherland RA, de Jong E (1990) Statistical analysis of gamma-emitting radionuclide concentrations for three fields in southern Saskatchewan, Canada. Health Phys 58:417–428

    Article  CAS  Google Scholar 

  22. Yokoyama Y, Falguères C, Sémah F, Jacob T, Grün R (2008) Gamma-ray spectrometric dating of Late Homo Erectus skulls from Ngandong and Sambungmacan, Central Java, Indonesia. J Hum Evol 55:274–277

    Article  Google Scholar 

  23. Yücel H, Solmaz AN, Köse E, Bor D (2010) Methods for spectral interference corrections for direct measurements of 234U and 230Th in materials by gamma-ray spectrometry. Radiat Prot Dosim 138:264–277. doi:10.1093/rpd/ncp239

    Article  Google Scholar 

  24. Ramebäck H, Vesterlund A, Tovedal A, Nygren U, Wallberg L, Holm E, Ekberg C, Skarnemark G (2010) The Jackknife as an approach for uncertainty assessment in gamma spectrometric measurements of uranium isotope ratios. Nucl Instrum Method Phys Res B 268:2535–2538

    Article  Google Scholar 

  25. Simpson JJ, Grün R (1998) Non-destructive gamma spectrometric U-series dating. Quat Geochronol 17:1009–1022

    Google Scholar 

  26. Yücel H, Cetiner MA, Demirel H (1998) Use of the 1001 keV peak of 234mPa daughter of 238U in measurement of uranium concentration by HPGe gamma-ray spectrometry. Nucl Instrum Method Phys Res A 413:74–82

    Article  Google Scholar 

  27. Pöllänen R, Ikäheimonen TK, Klemola S, Vartti VP, Vesterbacka K, Ristonmaa S, Honkamaa T, Sipilä P, Jokelainen I, Kosunen A, Zilliacus R, Kettunen M, Hokkanen M (2003) Characterization of projectiles composed of depleted uranium. J Environ Radioact 64:133–142

    Article  Google Scholar 

  28. Helgeston HC (1974) Chemical interaction of feldspars and aqueous solution in the feldspars. In: Mackenzie WL, Zussman J (eds) Manchester University Press, Manchester, 184–215

  29. Bucanan MS (1982) The geochemistry of some igneous rock series. Geochim Cosmochim Acta 9:101–137

    Google Scholar 

  30. Sweewald JS, Sayfried JW (1990) The effect of temperature on metal mobility in subsea floor hydrothermal systems: constraints from basalt alteration experiments. Earth Planet Sci Lett 101:388–403

    Article  Google Scholar 

  31. Frantz JD, Weisbord A (1974) Infiltration metasomatism in the system K2O–SiO2–Al2O3–H2O–HCl. Geochem Transp Kinet 634:261–271

    CAS  Google Scholar 

  32. Gascoyne M, Miller NH, Neymark LA (2002) Uranium-series disequilibrium in tuffs from Yucca Mountain, Nevada, as evidence of pore-fluid flow over the last million years. Appl Geochem 17:781–792

    Article  CAS  Google Scholar 

  33. Min M, Peng X, Wang J, Osmond JK (2005) Uranium-series disequilibria as a means to study recent migration of uranium in a sandstone-hosted uranium deposit, NW China. Appl Radiat Isot 63:115–125

    Article  CAS  Google Scholar 

  34. Dawood YH (2010) Factors controlling uranium and thorium isotopic composition of the streambed sediments of the River Nile, Egypt. JAKU 21(2):77–103

    Google Scholar 

  35. Chabaux F, Granet M, Pelt E, France-Lanord C, Galy V (2006) 238U–234U–230Th disequilibria and timescale of sedimentary transfers in rivers: clues from the Gangetic plain rivers. J Geochem Explor 88:373–375

    Article  CAS  Google Scholar 

  36. Brantley SL, Kubicki JD, White AF (2008) Kinetics of water–rock interaction. Springer Science + Business Media, LLC, New York 833

    Book  Google Scholar 

  37. Levinson AA, Bland CJ, Dean JR (1984) Uranium series disequilibrium in young surficial uranium deposits in southern British Columbia. Can J Earth Sci 21:559–566

    Article  CAS  Google Scholar 

  38. Osmond JK, Dabous AA, Dawood YH (1999) Uranium series age and origin of two secondary uranium deposits, central Eastern Desert, Egypt. Econ Geol 94:273–280

    Article  CAS  Google Scholar 

  39. Latham AG, Schwarcz HP (1987) On the possibility of determining rates of removal of uranium from crystalline igneous rocks using U-series disequilibria-1: a U-leach model, and its applicability to whole-rock data. Appl Geochem 2:55–65

    Article  CAS  Google Scholar 

  40. Dawood YH (2001) Uranium-series disequilibrium dating of secondary uranium ore from the south Eastern Desert of Egypt. Appl Radiat Isot 55:881–887

    Article  CAS  Google Scholar 

  41. Osmond JK, Cowart JB, Ivanovich M (1983) Uranium isotopic disequilibrium in groundwater as an indicator of anomalies. Appl Radiat Isot 34:283–308

    Article  CAS  Google Scholar 

  42. El Aassy IE, El Galy MM, Nada AA, El Feky MG, Abd El Maksoud TM, Talaat SM, Ibrahim EM (2011) Effect of alteration processes on the distribution of radionuclides in uraniferous sedimentary rocks and their environmental impact, southwestern Sinai, Egypt. J Radioanal Nucl Chem 289:173–184

    Article  Google Scholar 

  43. Thiel K, Vorwerk R, Saager R, Stupp HD (1983) 235U fission tracks and 238U-series disequilibria as a means to study recent mobilization of uranium in Archaean pyretic conglomerates. Earth Planet Sci Lett 65:249–262

    Article  CAS  Google Scholar 

  44. Chabaux F, Riotte J, Dequincey O (2003) Uranium-series geochemistry: U–Th–Ra fractionation during weathering and river transport. Rev Miner Geochem 52:533–576

    Article  CAS  Google Scholar 

  45. Fujii Y, Nomura M, Onitsuka H, Takeda K (1989) Anomalous isotope fractionation in uranium enrichment process. J Nucl Sci Technol 26:1061–1064

    Article  CAS  Google Scholar 

  46. Bigeleisen J (1996) Nuclear size and shape effects in chemical reactions; isotope chemistry of the heavy elements. Am Chem Soc 118:3676–3680

    Article  CAS  Google Scholar 

  47. Schauble EA (2006) Equilibrium uranium isotope fractionation by nuclear volume and mass-dependent processes. Eos 87, December Supplement, abs. V21B-0570

  48. Schauble EA (2007) Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements. Geochim Cosmochim Acta 71:2170–2189

    Article  CAS  Google Scholar 

  49. Brennecka GA, Borg LE, Hutcheon ID, Sharp MA, Anbar AD (2010) Natural variations in uranium isotope ratios of uranium ore concentrates: understanding the 238U/235U fractionation mechanism. Earth Planet Sci Lett 291:228–233

    Article  CAS  Google Scholar 

  50. Clarke SPJ, Peterman ZE, Heier KS (1966) Abundances in uranium, thorium and potassium. In: Handbook of physical constants, vol 97. Geological Society of America Memoirs, New York, pp 521–541

Download references

Acknowledgments

The authors would like to express their gratitude to Prof. Dr Ibrahim El Aassy, Professor in Geology, Vice President of Nuclear Materials Authority of Egypt for reading and revising the manuscript, and for his valuable disscusions and suggestions. They cordially thank the reviewers for their helpful comments and recommendations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed E. Abdel Gawad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel Gawad, A.E., Ibrahim, E.M. Activity ratios as a tool for studying uranium mobility at El Sela shear zone, southeastern Desert, Egypt. J Radioanal Nucl Chem 308, 129–142 (2016). https://doi.org/10.1007/s10967-015-4374-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4374-0

Keywords

Navigation