Simultaneous separation and purification of plutonium and americium from aqueous nitrate solutions using extractant impregnated macroporous polymeric beads

  • S. K. Pathak
  • S. C. Tripathi
  • K. K. Singh
  • A. K. Mahtele
  • Manmohan Kumar
  • P. M. Gandhi


The removal of Pu(IV) and Am(III) ions from aqueous nitrate solutions was studied using indigenously synthesized Extractant Impregnated Macroporous Polymeric Beads (EIMPBs). These beads exhibited almost quantitative sorption of Pu(IV) at acid strength of >2 M HNO3 while that of Am(III) at pH 3. Langmuir sorption model was found suitable, with the sorption capacity of EIMPBs for Pu(IV) and Am(III) as 2.13 and 2.64 mg g−1 respectively. Its performance remained unchanged until seven cycles of extraction and stripping using 0.1 M oxalic acid. A flow sheet for Purification of Pu(IV)/Am(III) from its mixture is proposed.


Sorption Polymeric beads PC88A Am(III) Pu(IV) Solid–liquid extraction 



Authors wish to acknowledge their sincere thanks to Dr. B. N. Jagtap, Director, Chemistry Group and Dr. D. K. Palit Head, Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India for their encouragement during the course of the present research and development work.

Supplementary material

10967_2015_4330_MOESM1_ESM.docx (618 kb)
Supplementary material 1 (DOCX 618 kb)


  1. 1.
    IAEA, (2001) Handling and processing of radioactive waste from nuclear applications. International Atomic Energy Agency, Technical Reports Series No. 402, IAEA, Vienna, AustriaGoogle Scholar
  2. 2.
    Raj K, Prasad KK, Bansal NK (2006) Radioactive waste management practices in India. Nucl Eng Des 236(7–8):914–930CrossRefGoogle Scholar
  3. 3.
    Taylor David M (1989) The biodistribution and toxicity of plutonium, americium and neptunium. Sci Total Environ 83(3):217–225CrossRefGoogle Scholar
  4. 4.
    Michael KM, Rizvi GH, Mathur JN, Kapoor SC, Ramanujam A, Iyer RH (1997) Recovery of plutonium and americium from laboratory acidic waste solutions using tri-n-octylamine and octylphenyl-N-N- diisobutylcarbamoylmethylphosphine oxide. Talanta 44(11):2095–2102CrossRefGoogle Scholar
  5. 5.
    Law JD, Brewer KN, Herbst RS, Todd TA, Wood DJ (1999) Development and demonstration of solvent extraction processes for the separation of radionuclides from acidic radioactive waste. Waste Manag 19(1):27–37CrossRefGoogle Scholar
  6. 6.
    Gamare JS, Chetty KV, Mukerjee SK, Kannan S (2009) Extraction studies of uranium(VI), plutonium(IV) and americium(III) from nitric acid using the bi-functional carbamoyl methyl sulfoxide ligands. Anal Sci 25(9):1167–1170CrossRefGoogle Scholar
  7. 7.
    Riitta P, Michael B (2000) Actinide separations by extraction chromatography. Appl Radiat Isot 53:273–277CrossRefGoogle Scholar
  8. 8.
    Desideri D, Feduzi L, Meli MA, Roselli C (2011) Sequential determination of Am, Cm, Pu, Np and U by extraction chromatography. Microchem J 97(2):264–268CrossRefGoogle Scholar
  9. 9.
    Fryxell GE, Lin Y, Fiskum S, Birnbaum JC, Wu H, Kemner K, Kelly S (2005) Actinide sequestration using self-assembled monolayers on mesoporous supports. Environ Sci Technol 39:1324–1331CrossRefGoogle Scholar
  10. 10.
    Petrukhin OM, Spivakov BY, Morgalyuk VP, Malofeeva GI, Kuzovkina EV, Novikov AP (2011) Solid-Phase extraction of Plutonium (IV) an Americium(III) using N-Benzoylphenylhydroxylamine and its derivatives. Russ J Inorg Chem 56:1839–1846CrossRefGoogle Scholar
  11. 11.
    Dhami PS, Kannan R, Naik PW, Gopalakrishnan V, Ramanujam A, Salvi NA, Chattopadhyay S (2002) Biosorption of americium using biomasses of various Rhizopus species. Biotechnol Lett 24(11):885–889CrossRefGoogle Scholar
  12. 12.
    Mohapatra PK, Manchanda VK (2003) Liquid membrane based separations of actinides and fission products. Indian J Chem Sect A 42:2925–2938Google Scholar
  13. 13.
    Sriram S, Mohapatra PK, Pandey AK, Manchanda VK, Badheka LP (2000) Facilitated transport of americium(III) from nitric acid media using dimethyldibutyltetradecyl-1,3-malonamide. J Membr Sci 177:163–175CrossRefGoogle Scholar
  14. 14.
    Sportsman S, Bluhm E, Abney K (2003) The separation of americium and plutonium achieved by facilitated transport through fixed site carrier membranes utilizing CMPO ligands. AIP Conf Proc 673(1):50–51CrossRefGoogle Scholar
  15. 15.
    Adya VC, Sengupta A, Ansari S, Mohapatra PK, Bhide MK, Godbole SV (2013) Application of hollow fiber supported liquid membrane for the separation of americium from the analytical waste. J Radioanal Nucl Chem 295(2):1023–1028CrossRefGoogle Scholar
  16. 16.
    Kim BT, Lee HK, Moon H, Lee KJ (1995) Adsorption of radionuclides from aqueous solutions by inorganic adsorbents. Sep Sci Technol 30(16):3165–3182CrossRefGoogle Scholar
  17. 17.
    Shehee TC, Elvington MC, Rudisill TS, Hobbs DT (2012) Separation of Actinides and Fission Products Using Titanium-Based Materials. Solvent Extr Ion Exch 30(7):669–682CrossRefGoogle Scholar
  18. 18.
    Galamboš M, Suchánek P, Rosskopfová O (2012) Sorption of anthropogenic radionuclides on natural and synthetic inorganic sorbents. J Radioanal Nucl Chem 293(2):613–633CrossRefGoogle Scholar
  19. 19.
    Neace JC (1983) Diluent degradation products in the purex solvent. Sep Sci Technol 18:1581–1594CrossRefGoogle Scholar
  20. 20.
    Tripathi SC, Ramanujam A (2003) Effect of radiation-induced physiochemical transformations on density and viscosity of 30 % TBP-n-dodecane-HNO3 system. Sep Sci Technol 38:2307–2326CrossRefGoogle Scholar
  21. 21.
    Sastre AM, Kumar A, Shukla JP, Singh RK (1998) Improved techniques in liquid membrane separations: an overview. Sep Purif Methods 27(2):213–298CrossRefGoogle Scholar
  22. 22.
    Pathak SK, Tripathi SC, Singh KK, Mahtele AK, Dwivedi C, Juby KA, Kumar M, Gandhi PM, Bajaj PN (2013) PC-88A—impregnated polymeric beads: preparation, characterization and application for extraction of Pu(IV) from nitric acid medium. Radiochim Acta 101:1–11CrossRefGoogle Scholar
  23. 23.
    Kedari CS, Kumar M, Tripathi SC, Dakshinamoorthy A, Munshi SK, Dey PK (2008) Extraction of U(VI), Pu(IV), Am(III) and some fission products by 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester immobilized polyvinyl alcohol hydrogels. J Radioanal Nucl Chem 277(2):321–327CrossRefGoogle Scholar
  24. 24.
    Gupta KK, Misra SK, Tripathi SC, Kumar M (2010) Extraction studies of plutonium from acidic solution using γ-ray induced PC-88A/TBP modified polymers. J Radioanal Nucl Chem 283(2):353–357CrossRefGoogle Scholar
  25. 25.
    Kedari CS, Pandit SS, Parikh KJ, Tripathi SC (2010) Removal of 241Am from aqueous nitrate solutions by liquid surfactant membrane containing 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester as ion carrier. Chemosphere 80:433–437CrossRefGoogle Scholar
  26. 26.
    Ngah WSW, Hanafiah M, Yong SS (2008) Adsorption of humic acid from aqueous solution on cross-linked chitosan-epichlorohydrin beads: kinetic and isotherm studies. Colloids Surf B 65:18–24CrossRefGoogle Scholar
  27. 27.
    Ho YS, McKay G (1998) A Comparison of chemisorptions kinetic models applied to pollutant removal on various sorbents. Proc Saf Environ Prot 76:332–340CrossRefGoogle Scholar
  28. 28.
    McKay G, Ho YS (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–460CrossRefGoogle Scholar
  29. 29.
    Yang XY, Al-Duri B (2005) Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon. J Colloid Interface Sci 287:25–34CrossRefGoogle Scholar
  30. 30.
    Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403CrossRefGoogle Scholar
  31. 31.
    Mohan D, Chander S (2006) Single, binary and multi component sorption of iron and manganese on lignite. J Colloid Interface Sci 299:57–76CrossRefGoogle Scholar
  32. 32.
    Freundlich HMF (1906) Z Phys Chem 57:385–470Google Scholar
  33. 33.
    Temkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim USSR 12:327–356Google Scholar
  34. 34.
    Dubinin MM (1960) The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chem Rev 60:235–266CrossRefGoogle Scholar
  35. 35.
    Allen SJ, Gan Q, Matthews R, Johnson PA (2003) Comparison of optimised isotherm models for basic dye adsorption by kudzu. Bioresour Technol 88:143–152CrossRefGoogle Scholar
  36. 36.
    Zhang A, Wei Y, Kumagai M (2004) Synthesis of a novel macroporous silica-based polymeric material containing 4,4′, (5′)-di(tert-butylcyclohexano)-18-crown-6 functional group and its adsorption mechanism for strontium. React Funct Polym 61(2):191–202CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • S. K. Pathak
    • 1
  • S. C. Tripathi
    • 1
  • K. K. Singh
    • 2
  • A. K. Mahtele
    • 1
  • Manmohan Kumar
    • 2
  • P. M. Gandhi
    • 1
  1. 1.Fuel Reprocessing DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Radiation and Photochemistry DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations