Skip to main content
Log in

Thermoluminescence characteristics of aluminium oxide doped with carbon and titanium co-doped subjected to 6 and 10 MV photon irradiations

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, thermoluminescence (TL) characteristics of powder form of polycrystalline aluminium oxide doped with 0.2 atomic percentage (at%) carbon (Al2O3:C 0.2 at%) and co-doped with two different concentrations of titanium (0.1 and 0.2 at%) subjected to X-ray irradiations were studied. This study was conducted to determine the capability of Al2O3:C co-doped with titanium (Al2O3:C:Ti) for thermoluminescent dosimetry (TLD). Al2O3:C co-doped with 0.1 at% titanium sample exhibited the highest TL intensity centered at 184 °C and a lower TL peak at 254 °C. It has shown some good dosimetric properties and can be considered to be used as TLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Recent applications of the NCRP public dose limit recommendation for ionizing radiation. NCRP Statement No. 10. 2004 (2004) NCRP, National Council on Radiation Protection and Measurements. http://www.ncrponline.org/Publications/Statements/Statements.html. Accessed 24 Nov 2014

  2. Dixon R, Gray JE, Archer B, Simpkin D (2005) Radiation protection standards: their evolution from science to philosophy. Radiat Prot Dosimetry 115(1–4):16–22. doi:10.1093/rpd/nci133

    Article  CAS  Google Scholar 

  3. Azorin J (2014) Preparation methods of thermoluminescent materials for dosimetric applications: an overview. Appl Radiat Isot 83:187–191. doi:10.1016/j.apradiso.2013.04.031

    Article  CAS  Google Scholar 

  4. Furetta C (2009) Handbook of Thermoluminescence. World Scientific Pub, River Edge, NJ. doi:10.1142/9789812838926_0020

    Book  Google Scholar 

  5. Kortov V (2007) Materials for thermoluminescent dosimetry: current status and future trends. Radiat Meas 42(4–5):576–581. doi:10.1016/j.radmeas.2007.02.067

    Article  CAS  Google Scholar 

  6. Akselrod MS et al (1993) Preparation and properties of alpha-Al2O3:C. Radiat Prot Dosim 47(1–4):159–164

    CAS  Google Scholar 

  7. Xin-Bo Y, Jun X, Hong-Jun L, Qun-Yu B, Yan C, Liang-Bi S, Qiang T (2010) Thermoluminescence and optically stimulated luminescence disadvantages of α-Al2O3:C crystal grown by the temperature gradient technique. Chinese Phys B 19(4):047803. doi:10.1088/1674-1056/19/4/047803

    Article  Google Scholar 

  8. Liu Q, Yang Q, Zhao G, Lu S (2014) Titanium effect on the thermoluminescence and optically stimulated luminescence of Ti, Mg: α-Al 2 O 3 transparent ceramics. J Alloy Compd 582:754–758. doi:10.1016/j.jallcom.2013.07.189

    Article  CAS  Google Scholar 

  9. McKeever S (1991) Measurements of emission spectra during thermoluminescence (TL) from LiF (Mg, Cu, P) TL dosimeters. J Phys D 24(6):988. doi:10.1088/0022-3727/24/6/027

    Article  CAS  Google Scholar 

  10. Rodriguez MG, Denis G, Akselrod MS, Underwood TH, Yukihara EG (2011) Thermoluminescence, optically stimulated luminescence and radioluminescence properties of Al2O3:C, Mg. Radiat Meas 46(12):1469–1473. doi:10.1016/j.radmeas.2011.04.026

    Article  CAS  Google Scholar 

  11. Bos AJJ (2001) High sensitivity thermoluminescence dosimetry. Nucl Instrum Meth B 184(1–2):3–28. doi:10.1016/S0168-583X(01)00717-0

    Article  CAS  Google Scholar 

  12. Ogundare FO, Ogundele SA, Chithambo ML, Fasasi MK (2013) Thermoluminescence characteristics of the main glow peak in α-Al2O3:C exposed to low environmental-like radiation doses. J Lumin 139:143–148. doi:10.1016/j.jlumin.2013.02.034

    Article  CAS  Google Scholar 

  13. Podgorsak EB (2005) Radiation oncology physics: a handbook for teachers and students. International Atomic Energy Agency, Vienna. doi:10.1118/1.2890977

    Google Scholar 

  14. Bensaleh S, Bezak E (2011) The impact of uncertainties associated with MammoSite brachytherapy on the dose distribution in the breast. J Appl Clin Med Phys 12(4):3464. doi:10.1120/jacmp.v12i4.3464

    Google Scholar 

  15. Cava S, Tebcherani SM, Souza IA, Pianaro SA, Paskocimas CA, Longo E, Varela JA (2007) Structural characterization of phase transition of Al2O3 nanopowders obtained by polymeric precursor method. Mater Chem Phys 103(2–3):394–399. doi:10.1016/j.matchemphys.2007.02.046

    Article  CAS  Google Scholar 

  16. Rogojan R, Andronescu E, Ghitulica C, Vasile BS (2011) Synthesis and characterization of alumina nano-powder obtained by sol-gel method. UPB Bull Scientific Ser B 73(2):67–76

    CAS  Google Scholar 

  17. Surdo A, Kortov V, Sharafutdinov F (1999) Luminescence of anion-defective corundum with titanium impurity. Radiat Prot Dosimetry 84(1–4):261–263

    Article  CAS  Google Scholar 

  18. Surdo AI, Kortov VS (2004) Exciton mechanism of energy transfer to F-centers in dosimetric corundum crystals. Radiat Meas 38(4–6):667–671. doi:10.1016/j.radmeas.2003.12.001

    Article  CAS  Google Scholar 

  19. Oberhofer M, Scharmann A (1993) Techniques and management of personnel thermoluminescence dosimetry services, vol 2. Springer Science & Business Media, New York

    Google Scholar 

  20. Matsunaga K, Nakamura A, Yamamoto T, Ikuhara Y (2003) First-principles study of defect energetics in titanium-doped alumina. Phys Rev B 68(21):214102. doi:10.1103/PhysRevB.68.214102

    Article  CAS  Google Scholar 

  21. Mikhailik V, Kraus H, Wahl D, Mykhaylyk M (2006) Studies of the luminescence properties of Ti-doped Al2O3 under VUV excitation. Hasylab Annual report

  22. Pekpak E, Yilmaz A, Özbayoglu G (2010) An overview on preparation and TL characterization of lithium borates for dosimetric use. TOMPJ 3(1):14–24. doi:10.2174/1874841401003010014

    Article  CAS  Google Scholar 

  23. Khan FM (2003) Khan’s the physics of radiation. Therapy. doi:10.1120/jacmp.v4i4.2507

    Google Scholar 

  24. González P, Furetta C, Calvo B, Gaso M, Cruz-Zaragoza E (2007) Dosimetric characterization of a new preparation of BaSO4 activated by Eu ions. Nucl Instrum Meth B 260(2):685–692. doi:10.1016/j.nimb.2007.04.155

    Article  CAS  Google Scholar 

  25. Hendee WR, Ritenour ER (2003) Medical imaging physics. Wiley, New York. doi:10.1002/0471221155

    Google Scholar 

  26. Garlick G, Gibson A (1948) The electron trap mechanism of luminescence in sulphide and silicate phosphors. Proc Phys Soc London 60(6):574. doi:10.1088/0959-5309/60/6/308

    Article  CAS  Google Scholar 

  27. Correcher V, Gomez-Ros J, Garcia-Guinea J, Lis M, Sanchez-Munoz L (2008) Calculation of the activation energy in a continuous trap distribution system of a charoite silicate using initial rise and TL glow curve fitting methods. Radiat Meas 43(2):269–272

    Article  CAS  Google Scholar 

  28. Zahedifar M, Eshraghi L, Sadeghi E (2012) Thermoluminescence kinetics analysis of α-Al2O3:C at different dose levels and populations of trapping states and a model for its dose response. Radiat Meas 47(10):957–964. doi:10.1016/j.radmeas.2012.07.018

    Article  CAS  Google Scholar 

  29. Ortega F, Marcazzó J, Molina P, Santiago M, Lester M, Henniger J, Caselli E (2013) Analysis of the main dosimetric peak of Al2O3:C compounds with a model of interacting traps. Appl Radiat Isot 78:33–37. doi:10.1016/j.apradiso.2013.02.023

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express sincere appreciation to Mr. Hassan Ali of Sultan Ismail Hospital for providing irradiation facilities, the Malaysian Ministry of Higher Education for providing scholarship and Universiti Teknologi Malaysia for their financial support under research grant of GUP 03H65.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuey Yong Leong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leong, C.Y., Wagiran, H., Ismail, A.K. et al. Thermoluminescence characteristics of aluminium oxide doped with carbon and titanium co-doped subjected to 6 and 10 MV photon irradiations. J Radioanal Nucl Chem 307, 229–236 (2016). https://doi.org/10.1007/s10967-015-4255-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4255-6

Keywords

Navigation