Journal of Radioanalytical and Nuclear Chemistry

, Volume 307, Issue 1, pp 229–236 | Cite as

Thermoluminescence characteristics of aluminium oxide doped with carbon and titanium co-doped subjected to 6 and 10 MV photon irradiations

  • Chuey Yong Leong
  • H. Wagiran
  • A. K. Ismail
  • H. Ali


In this work, thermoluminescence (TL) characteristics of powder form of polycrystalline aluminium oxide doped with 0.2 atomic percentage (at%) carbon (Al2O3:C 0.2 at%) and co-doped with two different concentrations of titanium (0.1 and 0.2 at%) subjected to X-ray irradiations were studied. This study was conducted to determine the capability of Al2O3:C co-doped with titanium (Al2O3:C:Ti) for thermoluminescent dosimetry (TLD). Al2O3:C co-doped with 0.1 at% titanium sample exhibited the highest TL intensity centered at 184 °C and a lower TL peak at 254 °C. It has shown some good dosimetric properties and can be considered to be used as TLD.


Thermoluminescence Aluminium oxide doped carbon and co-doped titanium Dosimetry TL intensity 



The authors would like to express sincere appreciation to Mr. Hassan Ali of Sultan Ismail Hospital for providing irradiation facilities, the Malaysian Ministry of Higher Education for providing scholarship and Universiti Teknologi Malaysia for their financial support under research grant of GUP 03H65.


  1. 1.
    Recent applications of the NCRP public dose limit recommendation for ionizing radiation. NCRP Statement No. 10. 2004 (2004) NCRP, National Council on Radiation Protection and Measurements. Accessed 24 Nov 2014
  2. 2.
    Dixon R, Gray JE, Archer B, Simpkin D (2005) Radiation protection standards: their evolution from science to philosophy. Radiat Prot Dosimetry 115(1–4):16–22. doi: 10.1093/rpd/nci133 CrossRefGoogle Scholar
  3. 3.
    Azorin J (2014) Preparation methods of thermoluminescent materials for dosimetric applications: an overview. Appl Radiat Isot 83:187–191. doi: 10.1016/j.apradiso.2013.04.031 CrossRefGoogle Scholar
  4. 4.
    Furetta C (2009) Handbook of Thermoluminescence. World Scientific Pub, River Edge, NJ. doi: 10.1142/9789812838926_0020 CrossRefGoogle Scholar
  5. 5.
    Kortov V (2007) Materials for thermoluminescent dosimetry: current status and future trends. Radiat Meas 42(4–5):576–581. doi: 10.1016/j.radmeas.2007.02.067 CrossRefGoogle Scholar
  6. 6.
    Akselrod MS et al (1993) Preparation and properties of alpha-Al2O3:C. Radiat Prot Dosim 47(1–4):159–164Google Scholar
  7. 7.
    Xin-Bo Y, Jun X, Hong-Jun L, Qun-Yu B, Yan C, Liang-Bi S, Qiang T (2010) Thermoluminescence and optically stimulated luminescence disadvantages of α-Al2O3:C crystal grown by the temperature gradient technique. Chinese Phys B 19(4):047803. doi: 10.1088/1674-1056/19/4/047803 CrossRefGoogle Scholar
  8. 8.
    Liu Q, Yang Q, Zhao G, Lu S (2014) Titanium effect on the thermoluminescence and optically stimulated luminescence of Ti, Mg: α-Al 2 O 3 transparent ceramics. J Alloy Compd 582:754–758. doi: 10.1016/j.jallcom.2013.07.189 CrossRefGoogle Scholar
  9. 9.
    McKeever S (1991) Measurements of emission spectra during thermoluminescence (TL) from LiF (Mg, Cu, P) TL dosimeters. J Phys D 24(6):988. doi: 10.1088/0022-3727/24/6/027 CrossRefGoogle Scholar
  10. 10.
    Rodriguez MG, Denis G, Akselrod MS, Underwood TH, Yukihara EG (2011) Thermoluminescence, optically stimulated luminescence and radioluminescence properties of Al2O3:C, Mg. Radiat Meas 46(12):1469–1473. doi: 10.1016/j.radmeas.2011.04.026 CrossRefGoogle Scholar
  11. 11.
    Bos AJJ (2001) High sensitivity thermoluminescence dosimetry. Nucl Instrum Meth B 184(1–2):3–28. doi: 10.1016/S0168-583X(01)00717-0 CrossRefGoogle Scholar
  12. 12.
    Ogundare FO, Ogundele SA, Chithambo ML, Fasasi MK (2013) Thermoluminescence characteristics of the main glow peak in α-Al2O3:C exposed to low environmental-like radiation doses. J Lumin 139:143–148. doi: 10.1016/j.jlumin.2013.02.034 CrossRefGoogle Scholar
  13. 13.
    Podgorsak EB (2005) Radiation oncology physics: a handbook for teachers and students. International Atomic Energy Agency, Vienna. doi: 10.1118/1.2890977 Google Scholar
  14. 14.
    Bensaleh S, Bezak E (2011) The impact of uncertainties associated with MammoSite brachytherapy on the dose distribution in the breast. J Appl Clin Med Phys 12(4):3464. doi: 10.1120/jacmp.v12i4.3464 Google Scholar
  15. 15.
    Cava S, Tebcherani SM, Souza IA, Pianaro SA, Paskocimas CA, Longo E, Varela JA (2007) Structural characterization of phase transition of Al2O3 nanopowders obtained by polymeric precursor method. Mater Chem Phys 103(2–3):394–399. doi: 10.1016/j.matchemphys.2007.02.046 CrossRefGoogle Scholar
  16. 16.
    Rogojan R, Andronescu E, Ghitulica C, Vasile BS (2011) Synthesis and characterization of alumina nano-powder obtained by sol-gel method. UPB Bull Scientific Ser B 73(2):67–76Google Scholar
  17. 17.
    Surdo A, Kortov V, Sharafutdinov F (1999) Luminescence of anion-defective corundum with titanium impurity. Radiat Prot Dosimetry 84(1–4):261–263CrossRefGoogle Scholar
  18. 18.
    Surdo AI, Kortov VS (2004) Exciton mechanism of energy transfer to F-centers in dosimetric corundum crystals. Radiat Meas 38(4–6):667–671. doi: 10.1016/j.radmeas.2003.12.001 CrossRefGoogle Scholar
  19. 19.
    Oberhofer M, Scharmann A (1993) Techniques and management of personnel thermoluminescence dosimetry services, vol 2. Springer Science & Business Media, New YorkGoogle Scholar
  20. 20.
    Matsunaga K, Nakamura A, Yamamoto T, Ikuhara Y (2003) First-principles study of defect energetics in titanium-doped alumina. Phys Rev B 68(21):214102. doi: 10.1103/PhysRevB.68.214102 CrossRefGoogle Scholar
  21. 21.
    Mikhailik V, Kraus H, Wahl D, Mykhaylyk M (2006) Studies of the luminescence properties of Ti-doped Al2O3 under VUV excitation. Hasylab Annual reportGoogle Scholar
  22. 22.
    Pekpak E, Yilmaz A, Özbayoglu G (2010) An overview on preparation and TL characterization of lithium borates for dosimetric use. TOMPJ 3(1):14–24. doi: 10.2174/1874841401003010014 CrossRefGoogle Scholar
  23. 23.
    Khan FM (2003) Khan’s the physics of radiation. Therapy. doi: 10.1120/jacmp.v4i4.2507 Google Scholar
  24. 24.
    González P, Furetta C, Calvo B, Gaso M, Cruz-Zaragoza E (2007) Dosimetric characterization of a new preparation of BaSO4 activated by Eu ions. Nucl Instrum Meth B 260(2):685–692. doi: 10.1016/j.nimb.2007.04.155 CrossRefGoogle Scholar
  25. 25.
    Hendee WR, Ritenour ER (2003) Medical imaging physics. Wiley, New York. doi: 10.1002/0471221155 Google Scholar
  26. 26.
    Garlick G, Gibson A (1948) The electron trap mechanism of luminescence in sulphide and silicate phosphors. Proc Phys Soc London 60(6):574. doi: 10.1088/0959-5309/60/6/308 CrossRefGoogle Scholar
  27. 27.
    Correcher V, Gomez-Ros J, Garcia-Guinea J, Lis M, Sanchez-Munoz L (2008) Calculation of the activation energy in a continuous trap distribution system of a charoite silicate using initial rise and TL glow curve fitting methods. Radiat Meas 43(2):269–272CrossRefGoogle Scholar
  28. 28.
    Zahedifar M, Eshraghi L, Sadeghi E (2012) Thermoluminescence kinetics analysis of α-Al2O3:C at different dose levels and populations of trapping states and a model for its dose response. Radiat Meas 47(10):957–964. doi: 10.1016/j.radmeas.2012.07.018 CrossRefGoogle Scholar
  29. 29.
    Ortega F, Marcazzó J, Molina P, Santiago M, Lester M, Henniger J, Caselli E (2013) Analysis of the main dosimetric peak of Al2O3:C compounds with a model of interacting traps. Appl Radiat Isot 78:33–37. doi: 10.1016/j.apradiso.2013.02.023 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Chuey Yong Leong
    • 1
  • H. Wagiran
    • 1
  • A. K. Ismail
    • 1
  • H. Ali
    • 2
  1. 1.Department of Physics, Faculty of ScienceUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Department of Oncology and radiotherapyHospital Sultan IsmailJohor BahruMalaysia

Personalised recommendations