Journal of Radioanalytical and Nuclear Chemistry

, Volume 307, Issue 2, pp 1093–1104 | Cite as

Sorption and desorption properties of Eu(III) on attapulgite



The sorption–desorption of Eu(III) on attapulgite was studied using batch technique. The sorption of Eu(III) on attapulgite was strongly dependent on pH and ionic strength at low pH, and independent of ionic strength at high pH. The interaction was dominated by outer-sphere surface complexation/ion exchange at low pH, and by inner-sphere surface complexation at high pH. The irreversible sorption–desorption curves also suggested the formation of strong surface complexes. The high sorption capacity of attapulgite suggested that the attapulgite is a suitable material for the efficient elimination of Eu(III) from aqueous solutions in nuclear wastewater management.


152+154Eu(III) Attapulgite Sorption–desorption Interaction mechanism 



Financial support from National Natural Science Foundation of China (21375148) and the Fundamental Research Funds for the Central Universities are acknowledged.


  1. 1.
    Tan XL, Ren XM, Chen CL, Wang XK (2014) Analytical approaches to the speciation of lanthanides on solid–water interfaces. Trend Anal Chem (TrAC) 61:107–132CrossRefGoogle Scholar
  2. 2.
    Yang S, Sheng G, Tan X, Hu J, Du J, Montavon G, Wang X (2011) Determination of Ni(II) sorption mechanisms on mordenite surfaces: a combined macroscopic and microscopic approach. Geochim Cosmochim Acta 75:6520–6534CrossRefGoogle Scholar
  3. 3.
    Hu R, Shao D, Wang X (2014) Graphene oxide/polypyrrole composites for highly selective enrichment of U(VI) from aqueous solutions. Polym Chem 5:6207–6215CrossRefGoogle Scholar
  4. 4.
    Wang X, Chen C, Hu W, Ding A, Xu D, Zhou X (2005) Sorption of 243Am(III) to multi-wall carbon nanotubes. Environ Sci Technol 39:2856–2860CrossRefGoogle Scholar
  5. 5.
    Hurel C, Marmier N (2010) Sorption of europium on a MX-80 bentonite sample: experimental and modelling results. J Radioanal Nucl Chem 284:225–230CrossRefGoogle Scholar
  6. 6.
    Lu SS, Xu JZ, Zhang CC, Niu ZW (2011) Adsorption and desorption of radionuclide europium(III) on multiwalled carbon nanotubes studied by batch techniques. J Radioanal Nucl Chem 287:893–898CrossRefGoogle Scholar
  7. 7.
    Shao DD, Fan QH, Li JX, Niu ZW, Wu WS, Chen YX, Wang XK (2009) Removal of Eu(III) from aqueous solution using ZSM-5 zeolite. Microporous Mesoporous Mater 123:1–9CrossRefGoogle Scholar
  8. 8.
    Hu J, Xie Z, He B, Sheng G, Chen C, Li J, Chen Y, Wang X (2010) Sorption of Eu(III) on GMZ bentonite in the absence/presence of humic acid studied by batch and XAFS techniques. Sci China B 53:1420–1428CrossRefGoogle Scholar
  9. 9.
    Das DK, Pathak PN, Kumar S, Manchanda VK (2009) Sorption behavior of Am 3 + on suspended pyrite. J Radioanal Nucl Chem 281:449–455CrossRefGoogle Scholar
  10. 10.
    Palagyi S, Vodickova H, Landa J, Palagyiova J, Laciok A (2009) Migration and sorption of Cs-137 and Eu-152, Eu-154 in crushed crystalline rocks under dynamic conditions. J Radioanal Nucl Chem 279:431–441CrossRefGoogle Scholar
  11. 11.
    Yang S, Zong P, Ren X, Wang Q, Wang X (2012) Rapid and high-efficient preconcentration of Eu(III) by core-shell structured humic acid@Fe3O4 magnetic nanoparticles. ACS Appl Mater Interface 4:6891–6900CrossRefGoogle Scholar
  12. 12.
    Yang S, Sheng G, Montavon G, Guo Z, Tan X, Grambow B, Wang X (2013) Investigation of Eu(III) immobilization on γ-Al2O3 surfaces by combining batch technique and EXAFS analysis: role of contact time and humic acid. Geochim Cosmochim Acta 121:84–104CrossRefGoogle Scholar
  13. 13.
    Rabung Th, Geckeis H, Kim J, Beck HP (1998) The influence of anionic ligands on the sorption behavior of Eu(III) on natural hematite. Radiochim Acta 82:243–248Google Scholar
  14. 14.
    Sheng G, Yang S, Li Y, Gao X, Huang Y, Hu J, Wang X (2014) Retention mechanisms and microstructure of Eu(III) on manganese dioxide studied by batch and high resolution EXAFS technique. Radiochim Acta 102:155–167CrossRefGoogle Scholar
  15. 15.
    Janot N, Benedetti MF, Reille PE (2011) Colloidal alpha–Al2O3, Europium (III) and humic substances interactions: a macroscopic and spectroscopic study. Environ Sci Technol 45:3224–3230CrossRefGoogle Scholar
  16. 16.
    Tan XL, Fan QH, Wang XK, Grambow B (2009) Eu(III) sorption to TiO2 (anatase and rutile): batch, XPS, and EXAFS study. Environ Sci Technol 43:3115–3121CrossRefGoogle Scholar
  17. 17.
    Rabung T, Pierret MC, Bauer A, Geckeis H, Bradbury MH, Baeyens B (2005) Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 1: batch sorption and time-resolved laser fluorescence spectroscopy experiments. Geochim Cosmochim Acta 69:5393–5402CrossRefGoogle Scholar
  18. 18.
    Wang X, Zhou X, Du J, Hu W, Chen C, Chen Y (2006) Using of chelating resin to study the kinetic desorption of Eu(III) from humic acid–Al2O3 colloid surfaces. Surf Sci 600:478–483CrossRefGoogle Scholar
  19. 19.
    Wang X, Sun Y, Wang X (2015) Interaction mechanism of Eu(III) with MX-80 bentonite studied by batch, TRLFS and kinetic desorption techniques. Chem Eng J 264:570–576CrossRefGoogle Scholar
  20. 20.
    Fan Q, Tan X, Li J, Wang X, Wu W, Montavon G (2009) Sorption of Eu(III) on attapulgite studied by batch, XPS and EXAFS techniques. Environ Sci Technol 43:5776–5782CrossRefGoogle Scholar
  21. 21.
    Fan Q, Shao D, Wu W, Wang X (2009) Effect of pH, ionic strength, temperature and humic substances on the sorption of Ni(II) to Na-attapulgite. Chem Eng J 150:188–195CrossRefGoogle Scholar
  22. 22.
    Chen C, Yang X, Wei J, Tan X, Wang X (2013) Eu(III) uptake on rectorite in the presence of humic acid: a macroscopic and spectroscopic study. J Colloid Interface Sci 393:249–256CrossRefGoogle Scholar
  23. 23.
    Montavon G, Rabung T, Geckeis H, Grambow B (2004) Interaction of Eu(III)/Cm(III) with alumina-bound poly(acrylic acid): sorption, desorption, and spectroscopic studies. Environ Sci Technol 38:4312–4318CrossRefGoogle Scholar
  24. 24.
    Ren X, Li J, Tan X, Shi W, Chen C, Shao D, Wen T, Wang L, Zhao G, Sheng G, Wang X (2014) Impact of Al2O3 on the aggregation and deposition of graphene oxide. Environ Sci Technol 48:5493–5500CrossRefGoogle Scholar
  25. 25.
    Giustetto R, Xamena FXL, Ricchiardi G, Bordiga S, Damin A, Gobetto R, Chierotti MR (2005) Maya blue: a computational and spectroscope study. J Phys Chem B 109:19360–19368CrossRefGoogle Scholar
  26. 26.
    Li A, Wang A (2005) Synthesis and properties of clay-based superabsorbent composite. Eur Polym J 41:1630–1637CrossRefGoogle Scholar
  27. 27.
    Wu WS, Fan QH, Xu JZ, Niu ZW, Lu SS (2007) Sorption–desorption of Th(IV) on attapulgite: effects of pH, ionic strength and temperature. Appl Radiat Isot 65:1108–1114CrossRefGoogle Scholar
  28. 28.
    Fan QH, Zhang ML, Zhang YY, Ding KF, Yang ZQ, Wu WS (2010) Sorption of Eu(III) and Am(III) on attapulgite: effect of pH, ionic strength and fulvic acid. Radiochim Acta 98:19–25CrossRefGoogle Scholar
  29. 29.
    Sheng G, Yang S, Sheng J, Hu J, Tan X, Wang X (2011) Macroscopic and microscopic investigation of Ni(II) sequestration on diatomite by batch, XPS and EXAFS techniques. Environ Sci Technol 45:7718–7726CrossRefGoogle Scholar
  30. 30.
    Lee S, Anderson PR, Bunker GB, Karanfil C (2004) EXAFS study of Zn sorption mechanisms on montmorillonite. Environ Sci Technol 38:5426–5432CrossRefGoogle Scholar
  31. 31.
    Kumar S, Kasar SU, Bajpai RK, Kaushik CP, Guin R, Das SK, Tomar BS (2014) Kinetics of Pu(IV) sorption by smectite-rich natural clay. J Radioanal Nucl Chem 300:45–59CrossRefGoogle Scholar
  32. 32.
    Sun Y, Li J, Wang X (2014) The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques. Geochim Cosmochim Acta 140:621–643CrossRefGoogle Scholar
  33. 33.
    Chen C, Wang X, Nagatsu M (2009) Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid. Environ Sci Technol 43:2362–2367CrossRefGoogle Scholar
  34. 34.
    Sun Y, Wang Q, Chen C, Tan X, Wang X (2012) Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ Sci Technol 46:6020–6207CrossRefGoogle Scholar
  35. 35.
    Sun Y, Shao D, Chen C, Yang S, Wang X (2013) Highly efficient enrichment of radionuclides on graphene oxide supported polyaniline. Environ Sci Technol 47:9904–9910CrossRefGoogle Scholar
  36. 36.
    Takahashi Y, Kimura T, Kato Y, Minai Y (1999) Speciation of europium(III) sorbed on a montmorillonite surface in the presence of polycarboxylic acid by laser-induced fluorence spectroscopy. Environ Sci Technol 33:4016–4021CrossRefGoogle Scholar
  37. 37.
    Montavon G, Hennig C, Janvier C, Grambow B (2006) Comparison of complexed species of Eu in alumina-bound and free polyacrylic acid: a spectroscopic study. J Colloid Inteface Sci 300:482–490CrossRefGoogle Scholar
  38. 38.
    Tan X, Wang X, Geckeis H, Rabung T (2008) Sorption of Eu(III) on humic acid or fulvic acid bound to alumina studied by SEM-EDS, XPS, TRLFS and batch techniques. Environ Sci Technol 42:6532–6537CrossRefGoogle Scholar
  39. 39.
    Yang ST, Zong PF, Sheng GD, Ren XM, Huang YY, Wang XK (2014) New insight into Eu(III) sorption mechanism at alumina/water interface by batch technique and EXAFS analysis. Radiochim Acta 102:143–153CrossRefGoogle Scholar
  40. 40.
    Janot N, Benedetti MF, Reiller PE (2011) Colloidal α-Al2O3, europium(III) and humic substances interactions: a macroscopic and spectroscopic study. Environ Sci Technol 45:3224–3230CrossRefGoogle Scholar
  41. 41.
    Sun Y, Chen C, Tan X, Shao D, Li J, Zhao G, Yang S, Wang Q, Wang X (2012) Enhanced adsorption of Eu(III) on mesoporous Al2O3/expanded graphite composites investigated by macroscopic and microscopic techniques. Dalton Trans 41:13388–13394CrossRefGoogle Scholar
  42. 42.
    Song W, Wang X, Wang Q, Shao D, Wang X (2015) Plasma induced grafting polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides. Phys Chem Chem Phys 17:398–406CrossRefGoogle Scholar
  43. 43.
    Yang ST, Sheng GD, Guo ZQ, Tan XL, Xu JZ, Wang XK (2012) Investigation of radionuclide 63Ni(II) sequestration mechanisms on mordenite by batch and EXAFS spectroscopy study. Science China Chem 55:632–642CrossRefGoogle Scholar
  44. 44.
    Zhao G, Li J, Ren X, Chen C, Wang X (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462CrossRefGoogle Scholar
  45. 45.
    Shao DD, Li JX, Wang XK (2014) Poly(amidoxime)-reduced graphene oxide composites as adsorbents for the enrichment of uranium from seawater. Science China Chem 57:1449–1458CrossRefGoogle Scholar
  46. 46.
    Schlegel ML, Pointeau I, Coreau N, Reiller P (2004) Mechanism of europium retention by calcium silicate hydrates: an EXAFS study. Environ Sci Technol 38:4423–4431CrossRefGoogle Scholar
  47. 47.
    Stumpf T, Curtis H, Walther C, Dardenne K, Ufer K, Fanghanel T (2007) Incorporation of Eu(III) into hydrotalcite: a TRLFS and EXAFS study. Environ Sci Technol 41:3186–3191CrossRefGoogle Scholar
  48. 48.
    Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X (2015) Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ Sci Technol 49:4255–4262CrossRefGoogle Scholar
  49. 49.
    Gustafsson JP (2010) Visual MINTEQ ver. 3.0.
  50. 50.
    Sheng GD, Shao DD, Fan QH, Xu D, Chen YX, Wang XK (2009) Effect of pH and ionic strength on sorption of Eu(III) to MX-80 bentonite: batch and XAFS study. Radiochim Acta 97:621–630CrossRefGoogle Scholar
  51. 51.
    Hu J, Chen C, Sheng G, Li J, Chen Y, Wang X (2010) Adsorption of Sr(II) and Eu(III) on Na-rectorite: effect of pH, ionic strength, concentration and modelling. Radiochim Acta 98:421–429Google Scholar
  52. 52.
    Li J, Chen C, Zhang S, Wang X (2014) Comparison of adsorption–desorption hysteresis of metal cation and anion ions from carbon nanotubes. Environ Sci 1:488–495Google Scholar
  53. 53.
    Li J, Chen C, Zhang S, Ren X, Tan X, Wang X (2014) Critical evaluation of adsorption–desorption hysteresis of heavy metal ions from carbon nanotubes: influence of wall number and surface functionalization. Chem Asian J 9:1144–1151CrossRefGoogle Scholar
  54. 54.
    Song WC, Shao DD, Lu SS, Wang XK (2014) Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets. Sci China Chem 57:1291–1299CrossRefGoogle Scholar
  55. 55.
    Geckeis H, Rabung Th, Ngomanh T, Kim JI, Beck HP (2002) Humic colloid-borne natural polyvalent metal ions: dissociation experiment. Environ Sci Technol 36:2946–2952CrossRefGoogle Scholar
  56. 56.
    Bradbury MH, Baeyens B (2002) Sorption of Eu on Na- and Ca-montmorillonites: experimental investigations and modelling with cation exchange and surface complexation. Geochim Cosmochim Acta 66:2325–2334CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Zhongshan Chen
    • 1
  • Jietao He
    • 1
  • Lei Chen
    • 1
    • 2
  • Songsheng Lu
    • 1
  1. 1.School of Environment and Chemical EngineeringNorth China Electric Power UniversityBeijingPeople’s Republic of China
  2. 2.School of Chemical EngineeringShandong University of TechnologyZiboPeople’s Republic of China

Personalised recommendations