Journal of Radioanalytical and Nuclear Chemistry

, Volume 307, Issue 2, pp 973–983 | Cite as

Ion exchange properties and lithium isotopes selectivity of H0.36La0.55TiO3, H4Ti5O12 and H2Ti3O7

  • Ling Gu
  • Xiao-Li Sun
  • Wen Zhou
  • Dong-Hong Ren
  • Dan Qiu
  • Zhi-Guo Gu
  • Zaijun Li


Inorganic ion exchangers in hydrogen forms, H0.36La0.55TiO3 (HLTO), H4Ti5O12 (HTO12) and H2Ti3O7 (HTO7) have been prepared by acid treatment of Li0.36La0.55TiO3, Li4Ti5O12 and Li2Ti3O7, respectively, which were synthesized by the solid-state reaction method. The selectivity of metal ions, Li+ ion exchange property and lithium isotopes separation property were investigated. The three ion exchangers were isotopically 6Li-specific, and the maximum single-stage separation factors of 6Li/7Li, were 1.042, 1.037 and 1.035 for HLTO, HTO12, and HTO7, respectively. The structures of HLTO, HTO12 and HTO7 were stable and they can be regenerated and recyclable in three cycles.


Lithium isotope separation Ion exchange H0.36La0.55TiO3, H4Ti5O12 H2Ti3O7 



This work was supported by the National Natural Science Foundation of China (21101078, 21276105 and 21176101), the Program for New Century Excellent Talents in University of China (NCET-11-0657), the Fundamental Research Funds for the Central Universities (JUSRP51314B), and the project for Jiangsu scientific and technological innovation team.


  1. 1.
    Symons EA (1985) Sep Sci Technol 20:633–651CrossRefGoogle Scholar
  2. 2.
    Rhinehammer TB, Wittenberg LJ (1978) Mound Facility Report MLM-2149Google Scholar
  3. 3.
    Okuyama K, Okada I, Saito N (1973) J Inorg Nucl Chem 35:2883–2895CrossRefGoogle Scholar
  4. 4.
    Nishizawa K, Ishino S, Watanabe H, Shinagawa M (1984) J Nucl Sci Technol 9:694–701CrossRefGoogle Scholar
  5. 5.
    Tanguchi S, Shioya I, Toyama O, Hayakawa T (1960) Eng Nat Sci 9:59–62Google Scholar
  6. 6.
    Black JR, Umeda G, Dunn B, McDonough WF, Kavner A (2009) J Am Chem Soc 131:9904–9905CrossRefGoogle Scholar
  7. 7.
    Saleem M, Hussain S, Rafiq M, Baig MA (2006) J Appl Phys 100:053111-1–053111-7Google Scholar
  8. 8.
    Lee DA, Bagen GM (1959) J Am Chem Soc 81:2332–2335CrossRefGoogle Scholar
  9. 9.
    Hagiwara Z, Takakura Y (1969) J Nucl Sci Technol 6:279–284CrossRefGoogle Scholar
  10. 10.
    Taylor TI, Urey HC (1938) J Chem Phys 6:429–438CrossRefGoogle Scholar
  11. 11.
    Inoue Y, Kanzakik Y, Abe M (1996) J Nucl Sci Technol 33:671–672CrossRefGoogle Scholar
  12. 12.
    Oi T, Endoh M, Narimoto M, Hosoe M (2000) J Mater Sci 35:509–513CrossRefGoogle Scholar
  13. 13.
    Makita Y, Kanoh H, Hirotsu T, Ooi K (1998) Chem Lett 1:77–78CrossRefGoogle Scholar
  14. 14.
    Oi T (2004) J Ion Exch 15:80–94CrossRefGoogle Scholar
  15. 15.
    Barrado AI, Fernandez M, Conde E, Quejido A, Quinones J, Sedano L (2011) Fusion Eng Des 86:2662–2665CrossRefGoogle Scholar
  16. 16.
    Takahashi H, Zhang YH, Miyajima T, Oi T (2006) J Mater Chem 16:1462–1469CrossRefGoogle Scholar
  17. 17.
    Takahashi H, Oi T (2001) J Mater Sci 36:1621–1625CrossRefGoogle Scholar
  18. 18.
    Oi T, Uchiyama Y, Hosoe M, Itoh K (1999) J Nucl Sci Technol 36:1064–1068CrossRefGoogle Scholar
  19. 19.
    Takahashi H, Miyajima T, Oi T (2002) J Nucl Sci Technol 39:463–466CrossRefGoogle Scholar
  20. 20.
    Kikuchi R, Takahashi H, Oi T (2003) J Mater Sci 38:515–520CrossRefGoogle Scholar
  21. 21.
    Susana GM, Ulises A, Ainhoa MO, Juan RC, Miguel AAF (2009) Z Anorg Allg Chem 635:2363–2373Google Scholar
  22. 22.
    Bohnke O, Pham QN, Boulant A, Emery J, Salkus T, Barre M (2011) Solid State Ionics 188:144–147CrossRefGoogle Scholar
  23. 23.
    Abe Y, Matsui E, Senna M (2007) J Phys Chem Solids 68:681–686CrossRefGoogle Scholar
  24. 24.
    Corcoran DJD, Tunstall DP, Irvine JTS (2000) Solid State Ionics 136–137:297–303CrossRefGoogle Scholar
  25. 25.
    Kanzaki Y, Suzuki N, Chitrakar R, Ohsaka T, Abe M (2002) J Phys Chem B 106:988–995CrossRefGoogle Scholar
  26. 26.
    Ooi K, Miyai Y, Sakakihara J (1991) Langmuir 7:1167–1171CrossRefGoogle Scholar
  27. 27.
    Tsuji A, Takahashi H, Oi T (2003) J Mater Chem 13:542–549CrossRefGoogle Scholar
  28. 28.
    Bigeleisen J, Mayer MG (1947) J Chem Phys 15:261–267CrossRefGoogle Scholar
  29. 29.
    Badger RM (1934) J Chem Phys 2:128–131CrossRefGoogle Scholar
  30. 30.
    Yanase S, Oi T (2005) J Nucl Sci Technol 42:362–367CrossRefGoogle Scholar
  31. 31.
    Fourquet JL, Duroy H, Crosnier LP (1996) J Solid State Chem 127:283–294CrossRefGoogle Scholar
  32. 32.
    Ruiz AI, Lopez ML, Veiga ML, Pico C (1998) Solid State Ionics 112:291–297CrossRefGoogle Scholar
  33. 33.
    Ibarra J, Varez A, Leon C, Santamaria J, Torres MLM, Sanz J (2000) Solid State Ionics 134:219–228CrossRefGoogle Scholar
  34. 34.
    Stramare S, Thangadurai V, Weppner W (2003) Chem Mater 15:3974–3990CrossRefGoogle Scholar
  35. 35.
    Kitta M, Matsuda T, Maeda Y, Akita T, Tanaka S, Kido Y, Kohyama M (2014) Surf Sci 619:5–9CrossRefGoogle Scholar
  36. 36.
    Lin CF, Lai MO, Zhou HH, Lu L (2014) Phys Chem Chem Phys 16:24874–24883CrossRefGoogle Scholar
  37. 37.
    Laumann A, Boysen H, Bremholm M, Fehr KT, Hoelzel M, Holzapfel M (2011) Chem Mater 23:2753–2759CrossRefGoogle Scholar
  38. 38.
    Orera A, Azcondo MT, Garcia AF, Sanz J, Sobrados I, Rodriguez CJ, Amador U (2009) Inorg Chem 48:7659–7666CrossRefGoogle Scholar
  39. 39.
    Villevieille C, Van TM, Scoyer J, Tessier C, Olivier FJ, Jumas JC, Monconduit L (2010) Electrochim Acta 55:7080–7084CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Ling Gu
    • 1
  • Xiao-Li Sun
    • 1
  • Wen Zhou
    • 1
  • Dong-Hong Ren
    • 1
  • Dan Qiu
    • 1
  • Zhi-Guo Gu
    • 1
    • 2
  • Zaijun Li
    • 1
  1. 1.School of Chemical and Material EngineeringJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations