Journal of Radioanalytical and Nuclear Chemistry

, Volume 307, Issue 2, pp 1419–1427 | Cite as

Purification of LiCl–KCl eutectic waste salt containing rare earth chlorides delivered from the pyrochemical process of used nuclear fuel using a reactive distillation process

  • H. C. Eun
  • J. H. Choi
  • I. H. Cho
  • T. K. Lee
  • T. J. Kim
  • J. S. Shin
  • H. S. Park
  • D. H. Ahn


In the pyrochemical process of used nuclear fuel, the purification of waste salts containing radioactive nuclides can greatly contribute to a radioactive waste reduction. For this reason, the purification of LiCl–KCl eutectic salt containing rare earth chlorides was performed using a series of the phosphorylation process and the distillation process. LiCl–KCl eutectic salt recovered from the purification had a very low concentration (<1 ppm) for the rare earth chlorides. The recycling feasibility of the recovered salt was verified through a uranium electro-deposition test using LiCl–KCl eutectic salt as the electrolyte. Based on these results, one body type of reactive distillation equipment with two top covers was designed.


Pyrochemical process Purification LiCl–KCl eutectic salt Rare earth chloride One body type of reactive distillation equipment 



This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2012M2A8A5025700).


  1. 1.
    Matsumiya M, Matsuura H (2005) Pyrochemical process for electrochemically base metals in molten halides combined countercurrent electromigration and electrowinning method. J Electroanal Chem 579:329–336CrossRefGoogle Scholar
  2. 2.
    Lee HS, Park GI, Kang KH, Hur JM, Kim JG, Ahn DH, Cho YZ, Kim EH (2011) Pyroprocessing technology development at KAERI. Nucl Eng Technol 43:317–328CrossRefGoogle Scholar
  3. 3.
    Kato T, Inoue T, Iwai T, Arai Y (2006) Separation behaviors of actinides from rare-earths in molten salt electrorefining using saturated liquid cadmium cathode. J Nucl Mater 357:105–114CrossRefGoogle Scholar
  4. 4.
    Park HS, Cho IH, Eun HC, Kim IT, Cho YZ, Lee HS (2011) Characteristics of wasteform composing of phosphate and silicate to immobilize radioactive waste salts. Environ Sci Technol 45:1932–1939CrossRefGoogle Scholar
  5. 5.
    Park HS, Kim IT, Cho YZ, Eun HC, Kim JH (2007) Characteristics of solidified products containing radioactive molten waste. Environ Sci Technol 41:7536–7542CrossRefGoogle Scholar
  6. 6.
    Cho YZ, Lee TK, Eun HC, Choi JH, Kim IT, Park GI (2013) Purification of used eutectic (LiCl-KCl) salt electrolyte from pyroprocessing. J Nucl Mater 437:47–54CrossRefGoogle Scholar
  7. 7.
    Harrison MT, Simms E, Jackson A, Lewin RG (2008) Salt waste treatment from a LiCl–KCl based pyrochemical spent fuel treatment process. Radiochim Acta 96:295–301CrossRefGoogle Scholar
  8. 8.
    Katayama Y, Hagiwara R, Ito Y (1995) Precipitation of rare earth compounds in LiCl–KCl eutectic. J Electrochem Soc 142:2174–2178CrossRefGoogle Scholar
  9. 9.
    Amamoto I, Kofuji H, Myochin M, Takasaki Y, Terai T (2009) Phosphate behaviours in conversion of FP chlorides. J Nucl Mater 389:142–148CrossRefGoogle Scholar
  10. 10.
    Amamoto I, Kofuji H, Myochin M, Takasaki Y, Terai T (2010) Precipitation behavior of fission products by phosphate conversion in LiCl–KCl medium. Nucl Technol 171:316–324Google Scholar
  11. 11.
    Simpson MF, Sachdev P (2008) Development of electrorefiner waste salt disposal process for the EBR-II spent fuel treatment. Nucl Eng Technol 40:175–182CrossRefGoogle Scholar
  12. 12.
    Volkovich VA, Vasin BD, Griffiths TR, Polovov IB, Medvedev EO, Yakimov SM (2007) Behaviour of rare earth elements in molten salts in relation to pyrochemical reprocessing of spent nuclear fuel. ECS Trans 35:493–502CrossRefGoogle Scholar
  13. 13.
    Hudry D, Bardez I, Rakhmatullin A, Bessada C, Bart F, Jobic S, Deniard P (2008) Synthesis of rare earth phosphates in molten LiCl-KCl eutectic: application to preliminary treatment of chlorinated waste streams containing fission products. J Nucl Mater 381:284–289CrossRefGoogle Scholar
  14. 14.
    Hudry D, Rakhmatullin A, Bessada C, Bart F, Jobic S, Deniard P (2009) Reactivity of NH4H2PO4 toward LaCl3 in LiCl-KCl melt flux. Step by step formation of monazite-like LaPO4. Inorg Chem 48:7141–7150CrossRefGoogle Scholar
  15. 15.
    Eun HC, Kim JH, Cho YZ, Choi JH, Lee TK, Park HS, Park GI (2013) An optimal method for phosphorylation of rare earth chlorides in LiCl–KCl eutectic based waste salt. J Nucl Mater 442:175–178CrossRefGoogle Scholar
  16. 16.
    Eun HC, Cho YZ, Son SM, Lee TK, Yang HC, Kim IT, Lee HS (2012) Recycling of LiCl–KCl eutectic based salt wastes containing radioactive rare earth oxychlorides or oxides. J Nucl Mater 420:548–553CrossRefGoogle Scholar
  17. 17.
    Eun HC, Cho YZ, Lee TK, Kim IT, Park GI, Lee HS (2013) An improvement study on the closed chamber distillation system for recovery of renewable salts from salt wastes containing radioactive rare earth compounds. J Radioanal Nucl Chem 295:345–350CrossRefGoogle Scholar
  18. 18.
    Kim TJ, Kim GY, Kim SH, Shim JB, Ahn DH, Paek S, Jung Y (2014) Quantitative analysis of lanthanide ions in LiCl-KCl molten salt by normal plus voltammetry. Asian J Chem 26:4035–4038Google Scholar
  19. 19.
    Cho YZ, Park GH, Yang HC, Han DS, Lee HS, Kim IT (2009) Minimization of eutectic salt waste from pyroprocessing by oxidative precipitation of lanthanides. J Nucl Sci Technol 46:1004–1011CrossRefGoogle Scholar
  20. 20.
    Ronie A (2002) Outokumpu HSC chemistry for windows. Outokumpu Research, PoriGoogle Scholar
  21. 21.
    Reddy BP, Vandarkuzhali S, Subramanian T, Venkatesh P (2004) Electrochemical studies on the redox mechanism of uranium chloride in molten LiCl–KCl eutectic. Electrochim Acta 49:2471–2478CrossRefGoogle Scholar
  22. 22.
    Masset P, Bottomley D, Konings R, Malmbeck R, Rodrigues A, Serp J, Glatz J-P (2005) Electrochemistry of uranium in molten LiCl–KCl eutectic. J Electrochm Soc 152:A1109–A1115CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • H. C. Eun
    • 1
  • J. H. Choi
    • 1
  • I. H. Cho
    • 1
  • T. K. Lee
    • 1
  • T. J. Kim
    • 1
  • J. S. Shin
    • 1
  • H. S. Park
    • 1
  • D. H. Ahn
    • 1
  1. 1.Nuclear Fuel Cycle Process Development DivisionKorea Atomic Energy Research InstituteDaejeonRepublic of Korea

Personalised recommendations