Skip to main content
Log in

Spatial distribution of neutron flux in geological larger sample analysis at CDTN/CNEN, Brazil

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Iron monitor wire was used to evaluate the neutron flux gradients inside 5 g-geological sample during irradiation. The spatial distribution for thermal flux was about 2 %/cm for radial and axial gradients and about 5 %/cm for radial and 2.5 %/cm for axial gradients for fast neutrons. The results were evaluated using reference material IAEA-SOIL-7 analysed as small and larger samples and tested with calculating E n numbers. This test pointed out that all results were consistent within a 95 % confidence interval. The contribution of the neutron flux gradients may be reduced for larger sample using the standard procedure of the k 0-instrumental neutron activation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bode P, Overwater RMW, De Goei JJM (1997) Large-sample neutron activation analysis: present status and prospects. J Radioanal Nucl Chem 216:5–11

    Article  CAS  Google Scholar 

  2. Gwozdz R (2007) Instrumental neutron activation analysis of samples with volumes from 2 to 350 ml. J Radioanal Nucl Chem 271:751–759

    Article  CAS  Google Scholar 

  3. Chilian C, St-Pierre J, Kennedy G (2006) Dependence of thermal and epithermal neutron self-shielding on sample size and irradiation site. Nucl Instrum Methods A 564:629–635

    Article  CAS  Google Scholar 

  4. Trkov A, Žerovnik G, Snoj L, Ravnik M (2009) On the self-shielding factors in neutron activation analysis. Nucl Instrum Methods Phys Res A 610:553–565

    Article  CAS  Google Scholar 

  5. Tzika F, Stamatelatos IE, Kalef-Ezra J, Bode P (2004) Large sample neutron activation analysis: correction for neutron and gamma attenuation. Nukleonika 49:115–121

    CAS  Google Scholar 

  6. Matsushita R, Koyama M, Yamada S, Kobayashi M, Moriyama H (1997) Neutron flux gradients and spectrum changes in the irradiation capsule for reactor neutron activation analysis. J Radioanal Nucl Chem 216:95–99

    Article  CAS  Google Scholar 

  7. Blaauw M, Lakmaker O, Van Aller P (1997) The accuracy of instrumental neutron activation analysis of kilogram-size inhomogeneous samples. Anal Chem 69:2247–2250

    Article  CAS  Google Scholar 

  8. Tzika F, Stamatelatos IE, Kalef-Ezra J (2007) Neutron activation analysis of large samples: the influence of inhomogeneity. J Radioanal Nucl Chem 271:233–240

    Article  CAS  Google Scholar 

  9. Shakir NS, Jervis RE (2001) Correction factors required for quantitative large volume INAA. J Radioanal Nucl Chem 248:61–68

    Article  CAS  Google Scholar 

  10. Overwater RMW (1994) The physics of big sample instrumental neutron activation analysis, PhD Thesis, TUDelft, Delft

  11. Lin X, Henkelmann R (2002) Instrumental neutron activation analysis of large samples: a pilot experiment. J Radioanal Nucl Chem 251:197–204

    Article  CAS  Google Scholar 

  12. Menezes MABC, Jaćimović R (2014) Implementation of a methodology to analyse cylindrical 5-g sample by neutron activation technique, k 0 method, at CDTN/CNEN, Belo Horizonte, Brazil. J Radioanal Nucl Chem 300:523–531

    Article  CAS  Google Scholar 

  13. Tzika F, Stamatelatos IE, Kalef-Ezra J (2007) Neutron activation analysis of large samples: the influence of inhomogeneity. J Radioanal Nucl Chem 271:233–240

    Article  CAS  Google Scholar 

  14. Chilian C, Kassakov M, St-Pierre J, Kennedy G (2006) Extending NAA to materials with high concentrations of neutron absorbing elements. J Radioanal Nucl Chem 270:417–423

    Article  CAS  Google Scholar 

  15. Arbocco FF, Vermaercke P, Sneyers L, Strijckmans K (2012) Experimental validation of some thermal neutron self-shielding calculation methods for cylindrical samples in INAA. J Radioanal Nucl Chem 291:529–534

    Article  Google Scholar 

  16. Jaćimović R, Stibilj V, Benedik L, Smodiš B (2003) Characterization of the neutron flux gradients in typical irradiation channels of a TRIGA Mark II reactor. J Radioanal Nucl Chem 257:545–549

    Article  Google Scholar 

  17. Menezes MABC, Jaćimović R (2006) Optimised k 0-instrumental neutron activation method using the TRIGA MARK I IPR-R1 reactor at CDTN/CNEN, Belo Horizonte, Brazil. Nucl Instrum Methods Phys Res A 564:707–715

    Article  CAS  Google Scholar 

  18. HyperLab (2009) Gamma Spectroscopy Software, HyperLabs Software, Budapest 1998–2013. http://hlabsoft.com/. Accessed 9 June 2013

  19. Kayzero for Windows (2011) User’s Manual, for reactor neutron activation analysis (NAA) using the k 0 standardisation method, Ver. 2.42. k 0-ware. Heerlen, The Netherlands

  20. International Standard (2005) Statistical methods for use in proficiency testing by interlaboratory comparisons ISO 13528:2005

  21. International Atomic Energy Agency (2000) Reference material IAEA-SOIL-7, trace elements in soil. IAEA, Vienna

    Google Scholar 

  22. De Corte F (1987) The k 0 standardisation method: a move to the optimisation of neutron activation analysis. Ryksuniversiteit Ghent, Faculteit Van de Wetenschappen, Gent

Download references

Acknowledgments

This work was partially supported by the International Atomic Energy Agency under Grant BRA-14798, by the Foundation for Research Support of Minas Gerais, FAPEMIG, under Grant APQ-01259-09 and by financial support from the Slovenian Research Agency (ARRS) through programme P1-0143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Ângela de B. C. Menezes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de B. C. Menezes, M.Â., Jaćimović, R. & Pereira, C. Spatial distribution of neutron flux in geological larger sample analysis at CDTN/CNEN, Brazil. J Radioanal Nucl Chem 306, 611–616 (2015). https://doi.org/10.1007/s10967-015-4226-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4226-y

Keywords

Navigation