Advertisement

An investigation on the anti-tumor properties of FSH33-53-Lytic

  • Ping Liu
  • Runlin Yang
  • Donghui Pan
  • Yuping Xu
  • Chen Zhu
  • Qing Xu
  • Lizhen Wang
  • Junjie Yan
  • Xiaotian Li
  • Min Yang
Article

Abstract

A new designed hybrid peptide FSH33-53-Lytic was synthesized and expected to combine the follicle stimulating hormone receptor (FSHR) targeting and tumor cell membranes disintegration. Through in vitro and vivo study, no significant enhancement on anti-tumor activity was shown compared with Lytic peptide only. We also prepared 18F-Al-NOTA-MAL-FSH33-53-Lytic and use microPET image to observe the FSHR targeting of FSH33-53-Lytic. No accumulation in the tumor may explain the failure of FSH33-53-Lytic on cancer therapy. In summary, microPET image can provide more accurate and visible information for screening new anti-tumor agents.

Keywords

FSHR Lytic Anti-tumor MicroPET imaging Drug evaluation 

Notes

Acknowledgments

This work was supported by National Natural Science Foundation (81171399, 51473071, 81472749, 81401450, 21401084), National Significant New Drugs Creation Program (2012ZX09505-001-001), Jiangsu Province Foundation (BE2012622, BL2012031, BE2014609, BM2012066), Outstanding Professional Fund of Health Ministry in Jiangsu Province (RC2011095, Q201406), Wuxi Foundation (CSZ0N1320).

References

  1. 1.
    Smith LL, Brown K, Carthew P, Lim CK, Martin EA, Styles J, White IN (2000) Chemoprevention of breast cancer by tamoxifen: risks and opportunities. Crit Rev Toxicol 30:571–594CrossRefGoogle Scholar
  2. 2.
    Munshi A, McDonnell TJ, Meyn RE (2002) Chemotherapeutic agents enhance TRAIL-induced apoptosis in prostate cancer cells. Cancer Chemother Pharmacol 50:46–52CrossRefGoogle Scholar
  3. 3.
    Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13:61–92CrossRefGoogle Scholar
  4. 4.
    Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395CrossRefGoogle Scholar
  5. 5.
    Hancock RE, Diamond G (2000) The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 8:402–410CrossRefGoogle Scholar
  6. 6.
    Dennison SR, Whittaker M, Harris F, Phoenix DA (2006) Anticancer alpha-helical peptides and structure/function relationships underpinning their interactions with tumour cell membranes. Curr Protein Pept Sci 7:487–499CrossRefGoogle Scholar
  7. 7.
    Utsugi T, Schroit AJ, Connor J, Bucana CD, Fidler IJ (1991) Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res 51:3062–3066Google Scholar
  8. 8.
    Papo N, Braunstein A, Eshhar Z, Shai Y (2004) Suppression of human prostate tumor growth in mice by a cytolytic d-, l-amino Acid Peptide: membrane lysis, increased necrosis, and inhibition of prostate-specific antigen secretion. Cancer Res 64:5779–5786CrossRefGoogle Scholar
  9. 9.
    Oren Z, Hong J, Shai Y (1997) A repertoire of novel antibacterial diastereomeric peptides with selective cytolytic activity. J Biol Chem 272:14643–14649CrossRefGoogle Scholar
  10. 10.
    Papo N, Shai Y (2003) New lytic peptides based on the d, l-amphipathic helix motif preferentially kill tumor cells compared to normal cells. Biochemistry 42:9346–9354CrossRefGoogle Scholar
  11. 11.
    Kawamoto M, Horibe T, Kohno M, Kawakami K (2011) A novel transferrin receptor-targeted hybrid peptide disintegrates cancer cell membrane to induce rapid killing of cancer cells. BMC Cancer 11:359CrossRefGoogle Scholar
  12. 12.
    Kawamoto M, Horibe T, Kohno M, Kawakami K (2013) HER2-targeted hybrid peptide that blocks HER2 tyrosine kinase disintegrates cancer cell membrane and inhibits tumor growth in vivo. Mol Cancer Ther 12:384–393CrossRefGoogle Scholar
  13. 13.
    Kohno M, Horibe T, Haramoto M, Yano Y, Ohara K, Nakajima O, Matsuzaki K, Kawakami K (2011) A novel hybrid peptide targeting EGFR-expressing cancers. Eur J Cancer 47:773–783CrossRefGoogle Scholar
  14. 14.
    Ueyama H, Horibe T, Nakajima O, Ohara K, Kohno M, Kawakami K (2011) Semaphorin 3A lytic hybrid peptide binding to neuropilin-1 as a novel anti-cancer agent in pancreatic cancer. Biochem Biophys Res Commun 414:60–66CrossRefGoogle Scholar
  15. 15.
    Sprengel R, Braun T, Nikolics K, Segaloff DL, Seeburg PH (1990) The testicular receptor for follicle stimulating hormone: structure and functional expression of cloned cDNA. Mol Endocrinol 4:525–530CrossRefGoogle Scholar
  16. 16.
    Simoni M, Gromoll J, Nieschlag E (1997) The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology. Endocr Rev 18:739–773Google Scholar
  17. 17.
    Vu Hai MT, Lescop P, Loosfelt H, Ghinea N (2004) Receptor-mediated transcytosis of follicle-stimulating hormone through the rat testicular microvasculature. Biol Cell 96:133–144CrossRefGoogle Scholar
  18. 18.
    Zhang XY, Chen J, Zheng YF, Gao XL, Kang Y, Liu JC, Cheng MJ, Sun H, Xu CJ (2009) Follicle-stimulating hormone peptide can facilitate paclitaxel nanoparticles to target ovarian carcinoma in vivo. Cancer Res 69:6506–6514CrossRefGoogle Scholar
  19. 19.
    Mariani S, Salvatori L, Basciani S, Arizzi M, Franco G, Petrangeli E, Spera G, Gnessi L (2006) Expression and cellular localization of follicle-stimulating hormone receptor in normal human prostate, benign prostatic hyperplasia and prostate cancer. J Urol 175:2072–2077CrossRefGoogle Scholar
  20. 20.
    Radu A, Pichon C, Camparo P, Antoine M, Allory Y, Couvelard A, Fromont G, Hai MT, Ghinea N (2010) Expression of follicle-stimulating hormone receptor in tumor blood vessels. N Engl J Med 363:1621–1630CrossRefGoogle Scholar
  21. 21.
    Gartrell BA, Tsao CK, Galsky MD (2013) The follicle-stimulating hormone receptor: a novel target in genitourinary malignancies. Urol Oncol 3:1403–1407CrossRefGoogle Scholar
  22. 22.
    Agris PF, Guenther RH, Sierzputowska-Gracz H, Easter L, Smith W, Hardin CC, Santa-Coloma TA, Crabb JW, Reichert LE Jr (1992) Solution structure of a synthetic peptide corresponding to a receptor binding region of FSH (hFSH-beta 33-53). J Protein Chem 11:495–507CrossRefGoogle Scholar
  23. 23.
    Westhoff WE, Slootstra JW, Puijk WC, van Leeuwen L, Schaaper WM, Oonk HB, Meloen RH (1997) In vitro inhibition of the biological activity of follicle-stimulating hormone by anti-peptide antisera representing the human follicle-stimulating hormone beta subunit sequence 33–53. Biol Reprod 56:460–468CrossRefGoogle Scholar
  24. 24.
    Xu YP, Pan DH, Zhu C, Xu Q, Wang LZ, Chen F, Yang RL, Luo SN, Yang M, Yan Y (2014) Pilot study of a novel 18F-labeled FSHR probe for tumor imaging. Mol Imaging Biol 16:578–585CrossRefGoogle Scholar
  25. 25.
    Xu YP, Pan DH, Wang LZ, Chen F, Luo SN, Yang M (2013) 68Ga-Labeled FSHR antagonist for prostate cancer imaging. Eur J Nucl Med Mol Imaging 40:s282–s283Google Scholar
  26. 26.
    Xu YP, Pan DH, Xu Q, Zhu C, Wang L, Chen F, Yang RL, Luo SN, Yang M (2014) Insulinoma imaging with glucagon-like peptide-1 receptor targeting probe 18F-FBEM-Cys-exendin-4. J Cancer Res Clin Oncol 9:1479–1488CrossRefGoogle Scholar
  27. 27.
    Wan WX, Guo NK, Pan DH, Yu CJ, Weng Y, Luo SN, Ding H, Xu YP, Wang LZ, Lang LX, Xie QG, Yang M, Chen XY (2013) First experience of 18F-alfatide in lung cancer patients using a new lyophilized kit for rapid radiofluorination. J Nucl Med 54:691–698CrossRefGoogle Scholar
  28. 28.
    Pan DH, Yan YJ, Yang RH, Xu YP, Chen F, Wang LZ, Luo SN, Yang M (2014) PET imaging of prostate tumors with 18F-Al-NOTA-MATBBN. Contrast Media Mol Imaging 9:342–348CrossRefGoogle Scholar
  29. 29.
    Lien S, Lowman HB (2003) Therapeutic peptides. Trends Biotechnol 21:556–562CrossRefGoogle Scholar
  30. 30.
    Chromek M, Slamova Z, Bergman P, Kovacs L, Podracka L, Ehren I, Hokfelt T, Gudmundsson GH, Gallo RL, Agerberth B, Brauner A (2006) The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 12:636–641CrossRefGoogle Scholar
  31. 31.
    Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, Lee SK, Shankar P, Manjunath N (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448:39–43CrossRefGoogle Scholar
  32. 32.
    Fuessel S, Meye A, Schmitz M, Zastrow S, Linne C, Richter K, Lobel B, Hakenberg OW, Hoelig K, Rieber EP, Wirth MP (2006) Vaccination of hormone-refractory prostate cancer patients with peptide cocktail-loaded dendritic cells: results of a phase I clinical trial. Prostate 66:811–821CrossRefGoogle Scholar
  33. 33.
    Wan MF, Feng L, Mei JH, Jiang MY, Hong ZL (2010) Expression and significance of follocle-stimulating hormone receptor in prostate cancer. Chin J Cancer Prev Treat 17:843–846Google Scholar
  34. 34.
    Modi DA, Sunoqrot S, Bugno J, Lantvit DD, Hong S, Burdette JE (2014) Targeting of follicle stimulating hormone peptide-conjugated dendrimers to ovarian cancer cells. Nanoscale 6:2812–2820CrossRefGoogle Scholar
  35. 35.
    Dirnhofer S, Berger C, Hermann M, Steiner G, Madersbacher S, Berger P (1998) Coexpression of gonadotropic hormones and their corresponding FSH- and LH/CG-receptors in the human prostate. Prostate 35:212–220CrossRefGoogle Scholar
  36. 36.
    Rozell TG, Davis DP, Chai Y, Segaloff DL (1998) Association of gonadotropin receptor precursors with the protein folding chaperone calnexin. Endocrinology 139:1588–1593Google Scholar
  37. 37.
    Wagner CC, Langer O (2011) Approaches using molecular imaging technology—use of PET in clinical microdose studies. Adv Drug Deliv Rev 63:539–546CrossRefGoogle Scholar
  38. 38.
    Yang M, Gao HK, Yan YJ, Sun XL, Chen K, Quan QM, Lang LX, Kiesewetter D, Niu G, Chen XY (2011) PET imaging of early response to the tyrosine kinase inhibitor ZD4190. Eur J Nucl Med Mol Imaging 38:1237–1247CrossRefGoogle Scholar
  39. 39.
    Yang M, Gao HK, Sun XL, Yan YJ, Quan QM, Zhang W, Mohamedali KA, Rosenblum MG, Niu G, Chen X (2011) Multiplexed PET probes for imaging breast cancer early response to VEGF121/rGel treatment. Mol Pharm 8:621–628CrossRefGoogle Scholar
  40. 40.
    Wagner CC, Muller M, Lappin G, Langer O (2008) Positron emission tomography for use in microdosing studies. Curr Opin Drug Discov Devel 11:104–110Google Scholar
  41. 41.
    Fischman AJ, Alpert NM, Babich JW, Rubin RH (1997) The role of positron emission tomography in pharmacokinetic analysis. Drug Metab Rev 29:923–956CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Ping Liu
    • 1
  • Runlin Yang
    • 2
  • Donghui Pan
    • 2
  • Yuping Xu
    • 2
  • Chen Zhu
    • 3
  • Qing Xu
    • 3
  • Lizhen Wang
    • 2
  • Junjie Yan
    • 2
  • Xiaotian Li
    • 1
  • Min Yang
    • 1
    • 2
    • 3
  1. 1.School of Pharmaceutical ScienceZhengzhou UniversityZhengzhouChina
  2. 2.Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
  3. 3.Department of Radiation OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina

Personalised recommendations