Journal of Radioanalytical and Nuclear Chemistry

, Volume 307, Issue 1, pp 395–405 | Cite as

Comparison of radiometric and non-radiometric methods for uranium determination in groundwater of Punjab, India

  • P. D. B. Sonali
  • K. Ajay
  • J. R. Priyanka
  • K. Rupali
  • V. K. Rajesh
  • S. Rajvir
  • K. S. Pradeepkumar


Uranium in groundwater samples collected from Punjab state, India was determined using radiometric methods (extractive liquid scintillation and Cerenkov counting). Experimental conditions were optimized by studying the effect of sample pH, quenching and amount of extracting agent added to the scintillation cocktail on recovery of uranium. To ensure the accuracy of results, both radiometric methods were compared with non radiometric method such as adsorptive stripping voltammetry and found to be very good agreement. The distinct advantage of proposed radiometric methods is almost 100 % effective especially extractive liquid scintillation for simultaneous measurement of alpha and beta emitting radionuclides with fast and simple sample preparation.


Uranium Groundwater Liquid scintillation counting Cerenkov counting AdSV 


  1. 1.
    UNSCEAR (2000) Sources and effects of ionizing radiation, vol I. United Nations Scientific Committee on the Effects of Atomic RadiationGoogle Scholar
  2. 2.
    U.S. EPA. (1991) Drinking water criteria document for uranium (draft). Environmental Protection Agency, WashingtonGoogle Scholar
  3. 3.
    WHO (2011) Guidelines for drinking water quality, recommendations, vol 1, 4th edn. World health organization, GenevaGoogle Scholar
  4. 4.
    Hassan G, Abbas R, Seyed JS (2012) Simple and rapid spectrophotometric method for determination of uranium (VI) in low grade uranium ores using arsenazo (III). Chem Chem Technol 6(3):245–249Google Scholar
  5. 5.
    Alrakabi M, Singh G, Bhalla A, Kumar S, Srivastava A, Rai B, Singh N, Shahi JS, Mehta D (2012) Study of uranium contamination of ground water in Punjab state in India using X-ray fluorescence technique. J Radioanal Nucl Chem 294:221–227CrossRefGoogle Scholar
  6. 6.
    Caroli S, Forte M, Nuccetelli C, Rusconi R, Risica S (2013) A short review on radioactivity in drinking water as assessed by radiometric and inductively coupled plasma-mass spectrometry techniques. Micro-chem J 107:95–100CrossRefGoogle Scholar
  7. 7.
    Djogic R, Pizeta I, Branica M (2001) Electrochemical determination of dissolved uranium in KRKA river estuary. Water Res 35(8):1915–1920CrossRefGoogle Scholar
  8. 8.
    Sander S, Wagner W, Henze G (1995) Direct determination of uranium traces by adsorptive stripping voltammetry. Anal Chim Acta 305:154–158CrossRefGoogle Scholar
  9. 9.
    Van Den Berg MG, Huang Zi Qiang (1984) Determination of uranium (VI) in sea water by cathodic stripping voltammetry of complexes with catechol. Anal Chim Acta 164:209–222CrossRefGoogle Scholar
  10. 10.
    Wang J, Setiadji R, Chen L, Lu J, Morton SG (1992) Automated system for on line adsorptive stripping voltammetric monitoring of trace levels of uranium. Electro-analysis 4:161–165CrossRefGoogle Scholar
  11. 11.
    Thomas FG, Henze G (2001) Introduction to voltammetric analysis—theory and practice. CSIRO, CollingwoodGoogle Scholar
  12. 12.
    Sylvia S (1999) Simultaneous adsorptive stripping voltammetric determination of molybdenum (VI), uranium (VI), vanadium (V), and antimony (III). Anal Chim Acta 394:81–89CrossRefGoogle Scholar
  13. 13.
    Salonen L (1988) Natural radionuclides in groundwater in Finland. Radiat Prot Dosim 24:163–166Google Scholar
  14. 14.
    Salonen L (1993) A rapid method for monitoring of uranium and radium in drinking water. Sci Total Environ 130/131:23CrossRefGoogle Scholar
  15. 15.
    Leyba JD, Vollmar HS, Field RA, DeVol TA, Brown DD, Cadieux JR (1994) Evaluation of a direct extraction/liquid scintillation counting technique for the measurement of uranium in water. J Radioanal Nucl Chem 194(2):337–344CrossRefGoogle Scholar
  16. 16.
    Martín-Sánchez A, Vera Tomé F, Orantos Quintana RM, Gómez Escobar V, Jurado Vargas M (1995) Gamma and alpha spectrometry for natural radioactive nuclides in the spa waters of Extremadura (Spain). J Environ Radioact 28:209–220CrossRefGoogle Scholar
  17. 17.
    Tosheva Z, Stoyanova K, Nikolchev L (2004) Comparison of different methods for uranium determination in water. J Environ Radioact 72(1):47–55CrossRefGoogle Scholar
  18. 18.
    Forte M, Rusconi R, Margini C, Abbate G, Maltese S, Badalamenti P, Bellinzona S (2001) Determination of uranium isotopes in food and environmental samples by different techniques: a comparison. Radiat Prot Dosim 97(4):325–328CrossRefGoogle Scholar
  19. 19.
    Gomez Escobar V, Vera Tomé F, Lozano JC, Martín Sánchez A (1998) Extractive procedure for uranium determination in water samples by liquid scintillation counting. Appl Radiat Isot 49(7):875–883CrossRefGoogle Scholar
  20. 20.
    Blackburn R, Al-Masri MS (1994) Determination of uranium by liquid scintillation and Cerenkov counting. Analyst 119:465–468CrossRefGoogle Scholar
  21. 21.
    McDowell WJ (1980) Alpha liquid scintillation counting: past, present, and future. In: Pens CT, Horrocks DL, Alpen EL (eds) Liquid scintillation counting; recent applications and development. Academic Press, New YorkGoogle Scholar
  22. 22.
    Dazhu Y, Yongjun Z, Mobius S (1991) Rapid method for alpha counting with extractive scintillator and pulses analysis. J Radioanal Nucl Chem 147(1):177–189CrossRefGoogle Scholar
  23. 23.
    McDowell WJ, Farrar DT, Billings MR (1974) Plutonium and Uranium determination in environmental samples: combined solvent extraction–liquid scintillation method. Talanta 21:1231CrossRefGoogle Scholar
  24. 24.
    Bouwer JE, McKlveen JW, McDowell WJ (1979) A solvent extraction- liquid scintillation method for assay of uranium and thorium in phosphate-containing material. Nucl Technol 42:102Google Scholar
  25. 25.
    Benedik L, Klemencic H, Repinc U, Vrecek P (2003) Uranium and its decay products in samples contaminated with uranium mine and mill waste. J Phys IV France 107:147CrossRefGoogle Scholar
  26. 26.
    Polona V, Benedik L, Repinc Stegnar P, Gantar I (2002) Radionuclides in underground water in an area contaminated with uranium mill waste. In: Merkel BJ, Planer-Friedrich B, Wolkersdorfer Ch (eds) Uranium in the aquatic environment. Springer, Heidelberg, pp 85–92Google Scholar
  27. 27.
    Pashalidis I, Tsertos H (2004) Radiometric determination of uranium in natural waters after enrichment and separation by cation-exchange and liquid-liquid extraction. J Radioanal Nucl Chem 260(3):439–442CrossRefGoogle Scholar
  28. 28.
    Abuzeida M, Arebi BH, Zolatarev YA, Komarov NA (1987) Selective liquid scintillation method of uranium α-spectrometry. J Radioanal Nucl Chem 116(2):285–289CrossRefGoogle Scholar
  29. 29.
    Suomela J, Walberg L, Melin J (1993) Methods for determination of strontium-90 in food and environmental samples by Cerenkov counting, SSI-rapport 93-11, ISSN 0282-4434. Swedish Radiation Protection Institute, StockholmGoogle Scholar
  30. 30.
    Al-Masri MS, Blackburn R (1995) Application of Cerenkov radiation for the assay of 226Ra in natural water. Sci Total Environ 173–174:53–59CrossRefGoogle Scholar
  31. 31.
    L’Annunziata F, Passo CJ Jr (2002) Cherenkov counting of yttrium-90 in the dry state; correlations with phosphorus-32 Cherenkov counting data. Appl Radiat Isot 56:907–916CrossRefGoogle Scholar
  32. 32.
    Prichard HM, Cox A (2001) Liquid scintillation screening method for isotopic uranium in drinking water. In: Ross H, Noakes JE, Spaulding JD (eds) Liquid scintillation counting and organic scintillators. Lewis Publishers Inc., MichiganGoogle Scholar
  33. 33.
    Venso EA, Prichard HM, Dodson CL (1993) Measurement of isotopic uranium in Texas drinking water supplies by liquid scintillation with alpha-beta discrimination. In: Noakes JE, Schonhofer F, Polach HA (eds) Liquid scintillation spectrometry. Radiocarbon, Tucson, pp 425–430Google Scholar
  34. 34.
    L’Annunziata MF (2003) Handbook of radioactivity analysis, 2nd edn. Academic press, California, pp 445–455Google Scholar
  35. 35.
    Pujol L, Sanchez-Cabeza JA (1997) Role of quenching on alpha/beta separation in liquid scintillation counting for several high capacity cocktails. Analyst 122:383–385CrossRefGoogle Scholar
  36. 36.
    Bhade SPD, Reddy PJ, Narayanan A, Narayan KK, Babu DAR, Sharma DN (2010) Standardization of calibration procedures for quantification of gross alpha and gross beta activities using liquid scintillation counter. J Radioanal Nucl Chem 284:367–375CrossRefGoogle Scholar
  37. 37.
    Kumar A, Rout S, Narayanan U, Mishra MK, Tripathi RM, Singh J, Kumar S, Kushwaha HS (2011) Geochemical modeling of uranium speciation in the subsurface aquatic environment of Punjab State in India. J Geol Min Res 3(5):137–146Google Scholar
  38. 38.
    Gascoyne M (1989) High levels of uranium in ground waters at Canada’s underground research laboratory, Lac du Bonnet, Manitoba, Canada. Appl Geochem 4:577–591CrossRefGoogle Scholar
  39. 39.
    Kumar A, Tripathi RM, Rout S, Mishra M, Ravi PM, Ghosh AK (2014) Characterization of groundwater composition in Punjab state with special emphasis on uranium content, speciation and mobility. Radiochim Acta. doi: 10.1515/ract-2014-2109 Google Scholar
  40. 40.
    Kumar A, Narayanan U, Sawant PD, Tripathi RM, Raj SR, Rout S, Supreeta P, Singh J, Kumar S, Kushwaha HS (2011) Risk assessment for natural uranium in subsurface water of Punjab state in India. Hum Ecol Risk Assess Int J 17(2):381–393CrossRefGoogle Scholar
  41. 41.
    Singhal RK, Karpe R, Kumar A, Preetha J, Hegde AG (2007) Determination of ultra trace level of uranium in ground water of different geochemical environment by adsorptive stripping voltammeter. Water Air Soil Pollut 184:17–27CrossRefGoogle Scholar
  42. 42.
    Singhal RK, Kumar A, Preetha J, Karpe R, Datta M, Hegde AG (2005) Association of uranium with colloids of natural organic matter in subsurface aquatic environment. J Radioanal Nucl Chem 265(3):405–408CrossRefGoogle Scholar
  43. 43.
    Blasiyh Nuño GA, Korob RO (2007) Influence of Th-231 in the activity determination of Th-234 by Cerenkov counting. Appl Radiat Isot 65(5):539–544CrossRefGoogle Scholar
  44. 44.
    Kumar A, Rout S, Karpe R, Mishra MK, Mishra DG, Ravi PM, Tripathi RM (2015) Textural and mineralogical characteristics of cultivated soils in SW Punjab: correlation with distribution of uranium, National Symposium on Nuclear and Radiochemistry (NUCAR). BARC, IndiaGoogle Scholar
  45. 45.
    Babu MNS, Somashekar RK, Kumar SA, Shivanna K, Krishnamurthy V, Eappen KP (2008) Concentration of uranium levels in ground water. Int J Environ Sci Technol 5(2):263CrossRefGoogle Scholar
  46. 46.
    Asikainen M (1982) Natural radioactivity of ground water and drinking water in Finland, STL-A39Google Scholar
  47. 47.
    Descamps B, Foulquier L (1988) Natural radioactivity in the principal constituents of French river ecosystems. Radiat Prot Dosim 24(1/4):143–147Google Scholar
  48. 48.
    Gans I (1985) Natural radionuclides in mineral waters. Sci Total Environ 45:93–99CrossRefGoogle Scholar
  49. 49.
    Swiss Federal Office of Public Health (SFOPH) (1997) Environmental radioactivity and radiation exposure in Switzerland, BernGoogle Scholar
  50. 50.
    National Environmental Protection Agency (NEPA) (1990) Nationwide survey of environmental radioactivity level in China (1983–1990), 90-S315-206Google Scholar
  51. 51.
    Cothern CR, Lappenbusch WL (1983) Occurrence of uranium in drinking water in the US. Health Phys 45:89–99CrossRefGoogle Scholar
  52. 52.
    Selden AI, Lundholm C, Edlund B, Hogdahl C, Britt-Marie EK, Bergstroma BE, Carl-Goran O (2009) Nephrotoxicity of uranium in drinking water from private drilled wells. Environ Res 109:486–494CrossRefGoogle Scholar
  53. 53.
    Banks D, Royset O, Strand T, Skarphagen H (1995) Radioelement (U, Th, Rn) concentrations in Norwegian bedrock ground waters. Environ Geol 25:165–180CrossRefGoogle Scholar
  54. 54.
    Gedeon R, Smith B, Amro H, Jawadeh J (1994) Natural radioisotopes in groundwater from the Amman-Zarka basin Jordan. Hydro chemical and regulatory implications. Applications of tracers in arid zone hydrology. IAHS Publication 232. IAHS Press, WallingfordGoogle Scholar
  55. 55.
    Yoon Y, Cho SY, Lee KY, Ko KS, Ha K (2013) Radiochemical determination of uranium and radium isotope in natural water using liquid scintillation counter. J Radioanal Nucl Chem 296(1):397–402CrossRefGoogle Scholar
  56. 56.
    Erden PE, Dirican A, Seferinoğlu M, Yeltepe E, Şahin NK (2014) 238U, 234U and 226Ra concentrations in mineral waters and their contribution to the annual committed effective dose in Turkey. J Radioanal Nucl Chem 301(1):159–166CrossRefGoogle Scholar
  57. 57.
    Jobbágy V, Kávási N, Somlai J, Dombovári P, Kardos R, Kovács T (2010) Radioanalytical investigations of uranium concentrations in natural spring, mineral, spa and drinking waters in Hungary. J Radioanal Nucl Chem 286(2):417–422CrossRefGoogle Scholar
  58. 58.
    Ioannidou A, Samaropoulos I, Efstathiou M, Pashalidis I (2011) Uranium in ground water samples of Northern Greece. J Radioanal Nucl Chem 289(2):551–555CrossRefGoogle Scholar
  59. 59.
    Chmielewska I, Chaupnik S, Bonczyk M (2014) Natural radioactivity in drinking underground waters in Upper Silesia and solid wastes produced during treatment. Appl Radiat Isot 93:96–100CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • P. D. B. Sonali
    • 1
  • K. Ajay
    • 2
  • J. R. Priyanka
    • 1
  • K. Rupali
    • 2
  • V. K. Rajesh
    • 1
  • S. Rajvir
    • 1
  • K. S. Pradeepkumar
    • 1
  1. 1.Radiation Safety Systems DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Health Physics DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations