Journal of Radioanalytical and Nuclear Chemistry

, Volume 306, Issue 1, pp 99–105 | Cite as

Biosorption of thorium(IV) from aqueous solution by living biomass of marine-derived fungus Fusarium sp. #ZZF51

  • S. K. Yang
  • N. Tan
  • W. L. Wu
  • X. J. Hou
  • K. X. Xiang
  • Y. C. Lin


The biosportion of Th(IV) by the marine-derived Fungus Fusarium sp. #ZZF51 was study. The Biosorption was found to be at a maximum (79.24 %), in a solution containing 50 mg Th/L, at pH 5.0, with 0.28 g dry biomass. The Temkin isotherm model and pseudo-second-order kinetic model was found to fit the data very well over the entire range of concentrations. The FTIR analysis reveals that the carboxyl, amino and hydroxyl groups on the cell wall of Fusarium sp. #ZZF51 play an important role in Th(IV) biosorption process.


Adsorption Living biomass Fusarium sp. #ZZF51 Optimized conditions Adsorption models 



The authors wish to thank the Natural Science Foundation of China (No.20072058) and Science and Technology Development Project of Hunan (No. 2010FJ3014) for the financial support.


  1. 1.
    Basu H, Singhal RK, Pimple MV, Manisha V, Bassan MKT, Reddy AVR, Mukherjee T (2011) Development of naturally occurring siliceous material for the preferential removal of thorium from U–Th from aquatic environment. J Radioanal Nucl Chem 289:231–237CrossRefGoogle Scholar
  2. 2.
    Shtangeeva I (2010) Uptake of uranium and thorium by native and cultivated plants. J Environ Radioact 101:458–463CrossRefGoogle Scholar
  3. 3.
    Gumrah O, Malcik N, Caglar P (2009) Optical ligand–thorium complex sensors using various reagents and the comparison of formation constants obtained in dip probe, flow cell and microchip systems. Sens Actuators B 139:125–131CrossRefGoogle Scholar
  4. 4.
    Mahani MK, Divsar F, Chaloosi M, Maragheh MG, Khanchi AR, Rofouei MK (2008) Simultaneous determination of thorium and uranyl ions by optode spectra and chemometric techniques. Sens Actuators B 133:632–637CrossRefGoogle Scholar
  5. 5.
    Kuber CB, Stanislaus FD (2009) Thorium biosorption by Aspergillus fumigatus, a filamentous fungal biomass. J Hazard Mater 165:670–676CrossRefGoogle Scholar
  6. 6.
    Hritcu D, Humelnicu D, Dodi G (2012) Magnetic chitosan composite particles: evaluation of thorium and uranyl ion adsorption from aqueous solutions. Carbohydr Polym 87:1185–1191CrossRefGoogle Scholar
  7. 7.
    Munagapati VS, Gutha Y, Yarramuthi V (2011) Equilibrium, kinetic and thermodynamic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by fungus (Trametes versicolor) biomass. J Taiwan Inst Chem Eng 42:965–971CrossRefGoogle Scholar
  8. 8.
    Tong KS, Kassim MJ, Azraa A (2011) Adsorption of copper ion from its aqueous solution by a novel biosorbent Uncaria gambir: equilibrium, kinetics, and thermodynamic studies. Chem Eng J 170:145–153CrossRefGoogle Scholar
  9. 9.
    Ghasemi M, Keshtkar AR, Dabbagh R, Safdari SJ (2011) Biosorption of uranium(VI) from aqueous solutions by Ca-pretreated Cystoseira indica alga: breakthrough curves studies and modeling. J Hazard Mater 189:141–149CrossRefGoogle Scholar
  10. 10.
    Levent A, Ahmet K, Hasan K, Mustafa II (2011) Adsorption of Cr(VI) on ureolytic mixed culture from biocatalytic calcification reactor. Colloids Surf B Biointerfaces 86:404–408CrossRefGoogle Scholar
  11. 11.
    Mohammad F, Ali D, Habibollah Y (2009) Biosorption equilibria of binary Cd (II) and Ni (II) systems onto Saccharomyces cerevisiae and Ralstonia eutropha cells: application of response surface methodology. J Hazard Mater 168:1437–1448CrossRefGoogle Scholar
  12. 12.
    Gabr RM, Hassan SHA, Shoreit AAM (2008) Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. Int Biodeterior Biodegrad 62:195–203CrossRefGoogle Scholar
  13. 13.
    Nadavala SK, Kim M (2011) Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis, kinetics and adsorption isotherms modeling. Chem Eng J 168:562–571CrossRefGoogle Scholar
  14. 14.
    Isik M (2008) Biosorption of Ni(II) from aqueous solutions by living and non-living ureolytic mixed culture. Colloids Surf B Biointerfaces 62:97–104CrossRefGoogle Scholar
  15. 15.
    Yang SK, Tan N, Yan XM, Chen F, Lin YC (2013) Adsorption of thorium(IV) from aqueous solution by non-living biomass of mangrove endophytic fungus Fusarium sp. #ZZF51. J Radioanal Nucl Chem 298:827–833CrossRefGoogle Scholar
  16. 16.
    Chen F, Tan N, Long W, Yang SK, She ZG, Lin YC (2014) Enhancement of uranium(VI) biosorption by chemically modified marine-derived mangrove endophytic fungus Fusarium sp. #ZZF51. J Radioanal Nucl Chem 299:193–201CrossRefGoogle Scholar
  17. 17.
    Yang HB, Tan N, Wu FJ, Liu HJ, Sun M, She ZG, Lin YC (2012) Biosorption of uranium (VI) by a mangrove endophytic fungus Fusarium sp. #ZZF51 from the South China Sea. J Radioanal Nucl Chem 292:1011–1016CrossRefGoogle Scholar
  18. 18.
    Bayyari MA, Nazal MK, Khalili FI (2010) The effect of ionic strength on the extraction of thorium(IV) from perchlorate solution by didodecylphosphoric acid (HDDPA). Arab J Chem 3:115–119CrossRefGoogle Scholar
  19. 19.
    Liu MX, Dong FQ, Yan XY, Zeng WM, Hou LY, Pang XF (2010) Biosorption of uranium by Saccharomyces cerevisiae and surface interactions under culture conditions. Bioresour Technol 101:8573–8580CrossRefGoogle Scholar
  20. 20.
    Li N, Bai R (2005) A novel amine-shielded surface cross-linking of chitosan hydrogel beads for enhanced metal adsorption performance. Ind Eng Chem Res 44:6692–6700CrossRefGoogle Scholar
  21. 21.
    Ofomaja AE, Naidoo EB (2010) Biosorption of lead(II) onto pine cone powder: studies on biosorption performance and process design to minimize biosorbent mass. Carbohydr Polym 82:1031–1042CrossRefGoogle Scholar
  22. 22.
    Misaelides P, Godelitsas A, Filippidis A (1995) Thorium and uranium uptake by natural zeolitic materials. Sci Total Environ 173(174):237–246CrossRefGoogle Scholar
  23. 23.
    Yang SK, Tan N, Yan XM, Chen F, Long W, Lin YC (2013) Thorium(IV) removal from aqueous medium by citric acid treated mangrove endophytic fungus Fusarium sp. #ZZF51. Mar Pollut Bull 74:213–219CrossRefGoogle Scholar
  24. 24.
    Zhu B, Fan TX, Zhang D (2008) Adsorption of copper ions from aqueous solution by citric acid modified soybean straw. J Hazard Mater 153:300–308CrossRefGoogle Scholar
  25. 25.
    Akar ST, Gorgulu A, Akar T (2011) Decolorization of Reactive Blue 49 contaminated solutions by Capsicum annuum seeds: batch and continuous mode biosorption applications. Chem Eng J 168:125–133CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • S. K. Yang
    • 1
    • 2
  • N. Tan
    • 1
  • W. L. Wu
    • 2
  • X. J. Hou
    • 2
  • K. X. Xiang
    • 2
  • Y. C. Lin
    • 3
  1. 1.School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyangChina
  2. 2.School of Chemistry and Chemical EngineeringHunan University of MedicineHuaihuaChina
  3. 3.School of Chemistry and Chemical EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations