Advertisement

Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

  • J. J. Horkley
  • K. P. Carney
  • E. M. Gantz
  • J. E. Davies
  • R. R. Lewis
  • J. P. Crow
  • C. A. Poole
  • T. S. Grimes
  • J. J. Giglio
Article

Abstract

Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.

Keywords

Mass separator Reference standard Isotope dilution Separations Mass spectrometry Enriched isotope spike 

Notes

Acknowledgments

The authors wish to thank Beam Imaging Solutions Inc., the Oak Ridge National Laboratory stable isotope mass separator group, the National Institute of Standards and Technology, and the U.S Department of Homeland Security for their continued support for this work.

References

  1. 1.
    Vogl J (2007) J Anal At Spectrom 22:475–492CrossRefGoogle Scholar
  2. 2.
    Carney KP, Horkley JJ, McGrath CA, Edwards AJ, Davies JE, Knighton GC, Sommers JD, Giglio JJ (2013) J Radioanal Nucl Chem 296:383–387CrossRefGoogle Scholar
  3. 3.
    Chabaux F, Ben Othman D, Birck JL (1994) Chem Geol 114:191–197CrossRefGoogle Scholar
  4. 4.
    Horwitz EP, McAlister DR, Dietz ML (2006) Sep Sci Technol 41:2163–2182CrossRefGoogle Scholar
  5. 5.
    Bagán H, Tarancón A, Rauret G, García JF (2011) Anal Chim Acta 686:50–56CrossRefGoogle Scholar
  6. 6.
    Chiarizia R, Horwitz EP, Dietz ML, Cheng YD (1998) React Funct Polym 38:249–257CrossRefGoogle Scholar
  7. 7.
    Greenwood NN, Earnshaw A (1984) Chemistry of the Elements. Pergamon Press plc., Elmsford, New YorkGoogle Scholar
  8. 8.
    Sommers J, Cummings D, Giglio J, Carney K (2009) J Radioanal Nucl Chem 282:591–595CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • J. J. Horkley
    • 1
  • K. P. Carney
    • 1
  • E. M. Gantz
    • 1
  • J. E. Davies
    • 1
  • R. R. Lewis
    • 2
  • J. P. Crow
    • 3
  • C. A. Poole
    • 3
  • T. S. Grimes
    • 3
  • J. J. Giglio
    • 3
  1. 1.Idaho National LaboratoryIdaho FallsUSA
  2. 2.Idaho National LaboratoryIdaho FallsUSA
  3. 3.Idaho National LaboratoryIdaho FallsUSA

Personalised recommendations