Advertisement

New developments in the experimental data for charged particle production of medical radioisotopes

  • F. Ditrói
  • F. Tárkányi
  • S. Takács
  • A. Hermanne
Article

Abstract

The goal of the present work is to give a review of developments achieved experimentally in the field of nuclear data for medically important radioisotopes in the last 3 years. The availability and precision of production related nuclear data is continuously improved mainly experimentally. This review emphasizes a couple of larger fields: the Mo/Tc generator problem and the generator isotopes in general, heavy α-emitters and the rare-earth elements. Other results in the field of medical radioisotope production are also listed.

Keywords

Charged particle induced nuclear reactions Medical radio-isotopes Review 

References

  1. 1.
    Thomson-Reuters (2014) Web of Science (WoS) http://apps.webofknowledge.com
  2. 2.
    IAEA (2014) Experimental Nuclear Reaction Data (EXFOR) https://www-nds.iaea.org/exfor/exfor.htm
  3. 3.
    IAEA (2014) Evaluated Nuclear Data File (ENDF) https://www-nds.iaea.org/exfor/endf.htm
  4. 4.
    Paraskevi D (2013) Nuclear data development and dissemination at IAEA. Paper presented at the Workshop of improved nuclear decay data, Antwerp, Belgium, 19 June 2013Google Scholar
  5. 5.
    Steyn GF, Vermeulen C, Szelecsenyi F, Kovacs Z, Suzuki K, Fukumura T, Nagatsu K (2011) Excitation functions of proton induced reactions on 89Y and 93Nb with special emphasis on the production of selected radio-zirconiums. J Korean Phys Soc 59:1991CrossRefGoogle Scholar
  6. 6.
    Tárkányi F, Ditrói F, Takács S, Király B, Hermanne A, Sonck M, Baba M, Ignatyuk AV (2012) Investigation of activation cross-sections of deuteron induced nuclear reactions on natMo up to 50 MeV. Nucl Instrum Methods B 274:1–25CrossRefGoogle Scholar
  7. 7.
    Ditrói F, Hermanne A, Tárkányi F, Takács S, Ignatyuk AV (2012) Investigation of the a-particle induced nuclear reactions on natural molybdenum. Nucl Instrum Methods B 285:125–141CrossRefGoogle Scholar
  8. 8.
    Qaim SM (2011) Recent advances in nuclear data research for medical applications. J Korean Phys Soc 59(2):1965–1970. doi: 10.3938/Jkps.59.1965 Google Scholar
  9. 9.
    Qaim SM (2011) Development of novel positron emitters for medical applications: nuclear and radiochemical aspects. Radiochim Acta 99(10):611–625. doi: 10.1524/ract.2011.1870 CrossRefGoogle Scholar
  10. 10.
    Qaim SM (2012) The present and future of medical radionuclide production. Radiochim Acta 100(8–9):635–651. doi: 10.1524/ract.2012.1966 CrossRefGoogle Scholar
  11. 11.
    Qaim SM (2001) Nuclear data for medical applications: an overview. Radiochim Acta 89(4–5):189–196. doi: 10.1524/ract.2001.89.4-5.189 Google Scholar
  12. 12.
    Qaim SM (2001) Nuclear data relevant to the production and application of diagnostic radionuclides. Radiochim Acta 89(4–5):223–232. doi: 10.1524/ract.2001.89.4-5.223 Google Scholar
  13. 13.
    Capote Noy R, Nortier FM (2011) Improvements in charged-particle monitor reactions and nuclear data for medical isotope production. Summary report, vol INDC(NDS)-0591. IAEA, ViennaGoogle Scholar
  14. 14.
    Nichols AL, Qaim SM, Capote-Noy R (2011) Summary report of the technical meeting on intermediate-term nuclear data needs for medical applications: cross sections and decay data, vol INDC(NDS)-0596. IAEA, ViennaGoogle Scholar
  15. 15.
    Nagai Y (2014) 99Mo production via 100Mo(n,2n)99Mo using accelerator neutrons. EPJ Web Conf 66:10007CrossRefGoogle Scholar
  16. 16.
    Nagai Y, Hashimoto K, Hatsukawa Y, Saeki H, Motoishi S, Sato N, Kawabata M, Harada H, Kin T, Tsukada K, Sato TK, Minato F, Iwamoto O, Iwamoto N, Seki Y, Yokoyama K, Shiina T, Ohta A, Takeuchi N, Kawauchi Y, Sato N, Yamabayashi H, Adachi Y, Kikuchi Y, Mitsumoto T, Igarashi T (2013) Generation of radioisotopes with accelerator neutrons by deuterons. J Phys Soc Jpn 82(6):129–135CrossRefGoogle Scholar
  17. 17.
    Sabelnikov AV, Maslov O, Molokanova L, Gustova M, Dmitriev SE (2006) Preparation of 99Mo and 99mTc by 100Mo(γ, n) photonuclear reaction on an electron accelerator, MT-25 microtron. Radiochemistry 48(2):191–194CrossRefGoogle Scholar
  18. 18.
    Chodash P, Angell CT, Benitez J, Norman EB, Pedretti M, Shugart H, Swanberg E, Yee R (2011) Measurement of excitation functions for the natMo(d, x)99Mo and natMo(p, x)99Mo reactions. Appl Radiat Isot 69(10):1447–1452. doi: 10.1016/j.apradiso.2011.05.013 CrossRefGoogle Scholar
  19. 19.
    Tárkányi F, Ditrói F, Hermanne A, Takács S, Ignatyuk AV (2012) Investigation of activation cross sections of proton induced nuclear reactions on natMo up to 40 MeV: new data and evaluation. Nucl Instrum Methods B 280:45–73CrossRefGoogle Scholar
  20. 20.
    Király B, Tárkányi F, Hermanne A, Takács S, Sonck M, Szucs Z, Ignatyuk AV (2011) Investigation of alternative production routes of (99m)Tc deuteron induced reactions on (100)Mo. Appl Radiat Isot 69(1):18–25. doi: 10.1016/j.apradiso.2010.08.006 CrossRefGoogle Scholar
  21. 21.
    Qaim SM, Sudár S, Scholten B, Koning AJ, Coenen HH (2014) Evaluation of excitation functions of 100Mo(p, d + pn)99Mo and 100Mo (p,2n)99mTc reactions: Estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99mTc. Appl Radiat Isot 85:101–113. doi: 10.1016/j.apradiso.2013.10.004 CrossRefGoogle Scholar
  22. 22.
    Gyehong K, Kwonsoo C, Sung Ho P, Byungil K (2014) Production of α-particle emitting 211 at using 45 MeV α-beam. Phys Med Biol 59(11):2849CrossRefGoogle Scholar
  23. 23.
    Ermolaev SV, Zhuikov BL, Kokhanyuk VM, Matushko VL, Kalmykov SN, Aliev RA, Tananaev IG, Myasoedov BF (2012) Production of actinium, thorium and radium isotopes from natural thorium irradiated with protons up to 141 MeV. Radiochim Acta 100:223CrossRefGoogle Scholar
  24. 24.
    Weidner JW, Mashnik SG, John KD, Hemez F, Ballard B, Bach H, Birnbaum ER, Bitteker LJ, Couture A, Dry D, Fassbender ME, Gulley MS, Jackman KR, Ullmann JL, Wolfsberg LE, Nortier FM (2012) Proton-induced cross sections relevant to production of 225Ac and 223Ra in natural thorium targets below 200 MeV. Appl Radiat Isot 70:2602CrossRefGoogle Scholar
  25. 25.
    Miederer M, Scheinberg DA, McDevitt MR (2008) Realizing the potential of the actinium-225 radionuclide generator in targeted alpha particle therapy applications. Adv Drug Deliv Rev 60(12):1371–1382. doi: 10.1016/j.addr.2008.04.009 CrossRefGoogle Scholar
  26. 26.
    Boll RA, Malkemus D, Mirzadeh S (2005) Production of actinium-225 for alpha particle mediated radioimmunotherapy. Appl Radiat Isot 62(5):667–679CrossRefGoogle Scholar
  27. 27.
    Apostolidis C, Carlos-Marquez R, Janssens W, Molinet R, Nikula T, Ouadi A (2001) Cancer treatment using Bi-213 and Ac-225 in radioimmunotherapy. Nucl News 44:29–33Google Scholar
  28. 28.
    Grimes WR (1967) Chemical research and development for molten-salt breeder reactors. ORNL-TM-1853. Oak Ridge, Tennessee, USAGoogle Scholar
  29. 29.
    Bruland OS, Nilsson S, Fisher DR, Larsen RH (2006) High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter Ra-223: adjuvant or alternative to conventional modalities? Clin Cancer Res 12:6250S–6257SCrossRefGoogle Scholar
  30. 30.
    Guseva LI (2009) A tandem generator system for production of (223)Ra and (211)Pb/(211)Bi in DTPA solutions suitable for potential application in radiotherapy. J Radioanal Nucl Chem 281:577–583CrossRefGoogle Scholar
  31. 31.
    Engle JW, Mashnik SG, Weidner JW, Wolfsberg LE, Fassbender ME, Jackman K, Couture A, Bitteker LJ, Ullmann JL, Gulley MS, Pillai C, John KD, Birnbaum ER, Nortier FM (2013) Cross sections from proton irradiation of thorium at 800 MeV. Phys Rev C 88(1):014604CrossRefGoogle Scholar
  32. 32.
    Jost CU, Griswold JR, Bruffey SH, Mirzadeh S, Stracener DW, Williams CL (2013) Measurement of cross sections for the 232Th(P,4n) 229Pa reaction at low proton energies. In: AIP conference proceedings, pp 520–524Google Scholar
  33. 33.
    Shahid M, Kim K, Naik H, Kim G (2014) Measurement of cross-sections for produced radionuclide in proton induced reactions on natHf up to 45 MeV. Nucl Instrum Methods Phys Res Sect B 322:13–22CrossRefGoogle Scholar
  34. 34.
    Tárkányi F, Ditrói F, Hermanne A, Takács S, Ignatyuk AV (2013) Investigation of production routes for the 161Ho Auger-electron emitting radiolanthanide, a candidate for therapy. J Radioanal Nucl Chem 298:277–286CrossRefGoogle Scholar
  35. 35.
    Khandaker MU, Kim K, Lee MW, Kim KS, Kim G, Otuka N (2012) Investigations of 89Y(p, x) 86,88,89gZr, 86m+g, 87 g, 87m, 88gY, 85gSr, and 84gRb nuclear processes up to 42 MeV. Nucl Instrum Methods Phys Res Sect B 271:72–81CrossRefGoogle Scholar
  36. 36.
    Tárkányi F, Takács S, Ditrói F, Hermanne A, Yamazaki H, Baba M, Mohammadi A, Ignatyuk AV (2014) Activation cross-sections of deuteron induced nuclear reactions on neodymium up to 50 MeV. Nucl Instrum Methods Phys Res Sect B 325:15–26. doi: 10.1016/j.nimb.2014.01.024 CrossRefGoogle Scholar
  37. 37.
    Tárkányi F, Hermanne A, Takács S, Ditrói F, Spahn I, Ignatyuk AV (2012) Activation cross-sections of proton induced nuclear reactions on thulium in the 20–45 MeV energy range. Appl Radiat Isot 70(1):309–314. doi: 10.1016/j.apradiso.2011.08.020 CrossRefGoogle Scholar
  38. 38.
    Koning AJ, Rochman D (2012) Modern nuclear data evaluation with the TALYS code system. Nucl Data Sheets 113:2841CrossRefGoogle Scholar
  39. 39.
    Dityuk AI, Konobeyev AY, Lunev VP, Shubin YN (1998) New version of the advanced computer code ALICE-IPPE. INDC (CCP)-410. IAEA, ViennaGoogle Scholar
  40. 40.
    Herman M, Capote R, Carlson BV, Oblozinsky P, Sin M, Trkov A, Wienke H, Zerkin V (2007) EMPIRE: nuclear reaction model code system for data evaluation. Nucl Data Sheets 108(12):2655–2715. doi: 10.1016/j.nds.2007.11.003 CrossRefGoogle Scholar
  41. 41.
    Khandaker MU, Uddin MS, Kim KS, Lee YS, Kim GN (2007) Measurement of cross-sections for the (p, xn) reactions in natural molybdenum. Nucl Instrum Methods Phys Res B 262:171CrossRefGoogle Scholar
  42. 42.
    Siiskonen T, Huikari J, Haavisto T, Bergman J, Heselius S-J, Lill J-O, Lonnroth T, Perajarvi K (2009) Excitation functions of proton-induced reactions in natCu in the energy range 7–17 MeV. Appl Radiat Isot 67:2037CrossRefGoogle Scholar
  43. 43.
    Uddin MS, Khandaker MU, Kim KS, Lee YS, Kim GN (2007) Excitation functions of the proton induced nuclear reactions on Zn-nat up to 40-MeV. Nucl Instrum Methods Phys Res B 258:313CrossRefGoogle Scholar
  44. 44.
    Simeckova E, Bem P, Honusek M, Stefanik M, Fischer U, Simakov SP, Forrest RA, Koning AJ, Sublet J-C, Avrigeanu M, Roman FL, Avrigeanu V (2011) Low and medium energy deuteron-induced reactions on 63,65Cu nuclei. Nucl Phys 84:14605Google Scholar
  45. 45.
    Titarenko YE, Batyaev VF, Titarenko AY, Butko MA, Pavlov KV, Florya SN, Tikhonov RS, Zhivun VM, Ignatyuk AV, Mashnik SG, Leray S, Boudard A, Cugnon J, Mancusi D, Yariv Y, Nishihara K, Matsuda N, Kumawat H, Mank G, Gudowski W (2011) Measurement and simulation of the cross sections for nuclide production in W-nat and Ta-181 targets irradiated with 0.04- to 2.6-GeV protons. Phys Atom Nucl 74:551CrossRefGoogle Scholar
  46. 46.
    Tárkányi F, Takács S, Ditrói F, Hermanne A, Ignatyuk AV, Uddin MS (2014) Activation cross sections of α-particle induced nuclear reactions on hafnium and deuteron induced nuclear reaction on tantalum: production of 178W/178mTa generator. Appl Radiat Isot 91:114CrossRefGoogle Scholar
  47. 47.
    Hermanne A, Rebeles RA, Tárkányi F, Takács S, Takács MP, Csikai J, Ignatyuk A (2012) Cross sections of deuteron induced reactions on Sc-45 up to 50 MeV: experiments and comparison with theoretical codes. Nucl Instrum Methods B 270:106–115. doi: 10.1016/j.nimb.2011.09.002 CrossRefGoogle Scholar
  48. 48.
    Lebeda O, Lozza V, Schrock P, Stursa J, Zuber K (2012) Excitation functions of proton-induced reactions on natural Nd in the 10–30 MeV energy range, and production of radionuclides relevant for double beta decay. Phys Rev C 85:14602CrossRefGoogle Scholar
  49. 49.
    Khandaker MU, Kim K, Lee M, Kim G (2014) Investigation of activation cross-sections of alpha-induced nuclear reactions on natural cadmium. Nucl Instrum Methods Phys Res Sect B 333:80–91CrossRefGoogle Scholar
  50. 50.
    Guertin A, Duchemin C, Haddad F, Michel N, Métivier V (2014) Measurements of 186Re production cross section induced by deuterons on natW target at ARRONAX facility. Nucl Med Biol 41(Supplement 0):e16–e18. doi: 10.1016/j.nucmedbio.2013.11.003 CrossRefGoogle Scholar
  51. 51.
    Tárkányi F, Ditrói F, Hermanne A, Takács S, Adam-Rebeles R, Walravens N, Cichelli O, Ignatyuk AV (2013) Investigation of activation cross-sections of proton induced nuclear reactions on natTl up to 42 MeV: review, new data and evaluation. Appl Radiat Isot 74:109–122CrossRefGoogle Scholar
  52. 52.
    Khandaker MU, Kim K, Kim G (2012) Production parameters of the therapeutic 105Rh radionuclide using medium energy cyclotron. Pramana 79(2):243–248CrossRefGoogle Scholar
  53. 53.
    Szelecsényi F, Kovács Z, Nagatsu K, Fukumura K, Suzuki K, Mukai K (2012) Investigation of direct production of 68 Ga with low energy multiparticle accelerator. Radiochim Acta 100(1):5–11CrossRefGoogle Scholar
  54. 54.
    Al-Abyad M, Abdel-Hamid AS, Tarkanyi F, Ditroi F, Takacs S, Seddik U, Bashter II (2012) Cross-section measurements and nuclear model calculation for proton induced nuclear reaction on zirconium. Appl Radiat Isot 70(1):257–262. doi: 10.1016/j.apradiso.2011.07.019 CrossRefGoogle Scholar
  55. 55.
    Akagi T, Yagi M, Yamashita T, Murakami M, Yamakawa Y, Kitamura K, Ogura K, Kondo K, Kawanishi S (2013) Experimental study for the production cross sections of positron emitters induced from 12C and 16O nuclei by low-energy proton beams. Radiat Meas 59:262CrossRefGoogle Scholar
  56. 56.
    Kozempel J, Abbas K, Simonelli F, Bulgheroni A, Holzwarth U, Gibson N (2012) Preparation of Cu-67 via deuteron irradiation of Zn-70. Radiochim Acta 100(419):419CrossRefGoogle Scholar
  57. 57.
    Hermanne A, Tarkanyi F, Takacs S, Adam Rebeles R, Ignatyuk A, Spellerberg S, Schweikert H (2011) Limitation of the long-lived 121Te contaminant in production of 123I through the 124Xe(p, x) route. Appl Radiat Isot 69:358CrossRefGoogle Scholar
  58. 58.
    Palumbo A, Tan WP, Gorres J, Wiescher M, Ozkan N, Guray RT, Yalcin C (2012) Measurement of 120Te(a, n) cross sections relevant to the astrophysical p process. Phys Rev C 85:028801CrossRefGoogle Scholar
  59. 59.
    Titarenko YE, Batyaev VF, Titarenko AY, Butko MA, Pavlov KV, Florya SN, Tikhonov RS, Zhivun VM, Ignatyuk AV, Mashnik SG, Leray S, Boudard A, Cugnon J, Mancusi D, Yariv Y, Nishihara K, Matsuda N, Kumawat H, Mank G, Gudowski W (2011) Measurement and simulation of the cross sections for nuclide production in Fe-56 and Cr-nat targets irradiated with 0.04- to 2.6-GeV protons. Phys Atom Nucl 74:523CrossRefGoogle Scholar
  60. 60.
    Titarenko YE, Batyaev VF, Titarenko AY, Butko MA, Pavlov KV, Florya SN, Tikhonov RS, Zhivun VM, Ignatyuk AV, Mashnik SG, Leray S, Boudard A, Cugnon J, Mancusi D, Yariv Y, Nishihara K, Matsuda N, Kumawat H, Mank G, Gudowski W (2011) Measurement and simulation of the cross sections for nuclide production in Nb-93 and Ni-nat targets irradiated with 0.04- to 2.6-GeV protons. Phys Atom Nucl 74:537CrossRefGoogle Scholar
  61. 61.
    Ditrói F, Tárkányi F, Takács S, Hermanne A, Yamazaki H, Baba M, Mohammadi A (2013) Activation cross-sections of longer lived products of proton induced nuclear reactions on manganese up to 70 MeV. Nucl Instrum Methods Phys Res B 308:34CrossRefGoogle Scholar
  62. 62.
    Ditrói F, Tárkányi F, Takács S, Hermanne A, Yamazaki H, Baba M, Mohammadi A (2013) Activation cross-sections of longer lived products of proton induced nuclear reactions on cobalt up to 70 MeV. J Radioanal Nucl Chem 298:853CrossRefGoogle Scholar
  63. 63.
    Zavorka L, Simeckova E, Honusek M, Katovsky K (2011) The activation of Fe by deuterons at energies up to 20 MeV. J Korean Phys Soc 59:1961CrossRefGoogle Scholar
  64. 64.
    Khandaker MU, Haba H, Kanaya J, Otuka N (2013) Activation cross-sections of deuteron-induced nuclear reactions on natural iron up to 24 MeV. Nucl Instrum Methods Phys Res B 316:33CrossRefGoogle Scholar
  65. 65.
    Tarkanyi F, Ditroi F, Takacs S, Hermanne A, Baba M, Ignatyuk AV (2011) Investigation of activation cross-sections of deuteron induced reactions on vanadium up to 40 MeV. Nucl Instrum Methods B 269(15):1792–1800. doi: 10.1016/j.nimb.2011.05.003 CrossRefGoogle Scholar
  66. 66.
    Ditrói F, Tárkányi F, Takács S, Hermanne A, Yamazaki H, Baba M, Mohammadi A, Ignatyuk AV (2011) Activation cross-sections of deuteron induced nuclear reactions on manganese up to 40 MeV. Nucl Instrum Methods B 269(17):1878–1883. doi: 10.1016/j.nimb.2011.05.020 CrossRefGoogle Scholar
  67. 67.
    Hermanne A, Adam Rebeles R, Tarkanyi F, Takacs S, Takacs M, Ignatyuk AV (2011) Cross sections of deuteron induced reactions on natCr up to 50 MeV: experiments and comparison with theoretical codes. Nucl Instrum Methods Phys Res B 269:2563CrossRefGoogle Scholar
  68. 68.
    Hermanne A, Takacs S, Adam-Rebeles R, Tarkanyi F, Takacs MP (2013) New measurements and evaluation of database for deuteron induced reaction on Ni up to 50 MeV. Nucl Instrum Methods Phys Res B 299:8CrossRefGoogle Scholar
  69. 69.
    Amjed N, Tárkányi F, Ditrói F, Takács S, Yuki H (2013) Activation cross-sections of deuteron induced reaction of natural Ni up to 40 MeV. Appl Radiat Isot 82:87CrossRefGoogle Scholar
  70. 70.
    Buchholz M, Spahn I, Scholten B, Coenen HH (2013) Cross-section measurements for the formation of manganese-52 and its isolation with a non-hazardous eluent. Radiochim Acta 101(8):491–499. doi: 10.1524/ract.2013.2083 Google Scholar
  71. 71.
    Buchholz M, Spahn I, Coenen HH (2014) Cross section measurements of proton and deuteron induced reactions on natural europium and yields of SPECT-relevant radioisotopes of gadolinium. Appl Radiat Isot 91:8–16. doi: 10.1016/j.apradiso.2014.04.022 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • F. Ditrói
    • 1
  • F. Tárkányi
    • 1
  • S. Takács
    • 1
  • A. Hermanne
    • 2
  1. 1.Institute for Nuclear ResearchHungarian Academy of SciencesDebrecenHungary
  2. 2.Cyclotron LaboratoryVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations