Advertisement

Selective sorption mechanism of Cs+ on potassium nickel hexacyanoferrate(II) compounds

  • YunHua Qing
  • Jun Li
  • Bin Kang
  • ShuQuan Chang
  • YaoDong Dai
  • Qing Long
  • Chao Yuan
Article

Abstract

Herein, the sorption behavior of potassium nickel hexacyanoferrate(II) (KNiFC) for Cs+ was investigated by sorption kinetics and isotherms. The results indicate sorption isotherms are well described by the Freundlich equation, sorption kinetics agree with pseudo-second-order kinetics, and rate limiting processes are controlled by film diffusion. The distribution coefficient of Cs+ (K d,Cs), decreased following the order: NH4 + > K+ > Na+ > Ca2+ > Mg2+, and declined with the increase of pH to a minimum value of 5.3 and then increased with the increase of pH. The selective sorption was closely related to hydrated radius, charge-radius, ionization potential and the structure of KNiFC.

Keywords

KNiFC Ion exchange Cs+ Radioactive wastewater 

Notes

Acknowledgments

This work was financially supported by the National Natural Foundation of China (11105073, 81101146), the Natural Science Foundation of Jiangsu Province (BK2011739, BK2011738, No. BK2012799) and the Ph.D. Programs Foundation of Ministry of Education of China (No. 2012321811008).

References

  1. 1.
    Fukushima Daiichi NPS Prompt Report (2013) Tokyo Electric Power Company, Tokyo. http://www.tepco.co.jp/en/press/corp-com/release/2013/1229861_5130.html. Accessed 19 Aug 2013
  2. 2.
    Montana M, Camacho A, Serrano I, Devesa R, Matia L, Valles I (2013) Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal. J Environ Radioact 125:86–92CrossRefGoogle Scholar
  3. 3.
    Park YJ, Lee YC, Shin WS, Choi SJ (2010) Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN). Chem Eng J 162:685–695CrossRefGoogle Scholar
  4. 4.
    Yu SM, Zha CC, Lu FF (2013) Simultaneous separation of simulated radionuclides strontium and neodymium using in situ hydrotalcite synthesis. J Radioanal Nucl Chem 298:877–882CrossRefGoogle Scholar
  5. 5.
    The 2012 nanonuclear workshop (2012) TMS, Maryland. http://www.tms.org/meetings/2012/nanonuclear/background.aspx. Accessed 7 June 2012
  6. 6.
    Hattori H, Alabi WO, Jermy BR, Aitani AM, Al-Khattaf SS (2013) Pathway to ethylbenzene formation in side-chain alkylation of toluene with methanol over cesium ion-exchanged zeolite X. Catal Lett 143:1025–1029CrossRefGoogle Scholar
  7. 7.
    Parab H, Sudersana M (2010) Engineering a lignocellulosic biosorbent-coir pith for removal of cesium from aqueous solutions: equilibrium and kinetic studies. Water Res 44:854–860CrossRefGoogle Scholar
  8. 8.
    Jiang J (2012) Study of an inorganic ion exchanger Mg2Ti1.25(PO4)3. Adv Mater 442:50–53CrossRefGoogle Scholar
  9. 9.
    Kazemian H, Zakeri H, Rabbani MS (2006) Cs and Sr removal from solution using potassium nickel hexacyanoferrate impregnated zeolites. J Radioanal Nucl Chem 268:231–236CrossRefGoogle Scholar
  10. 10.
    Mimura H, Kimura M, Akiba K, Onodera Y (1999) Selective removal of cesium from sodium nitrate solutions by potassium nickel hexacyanoferrate-loaded chabazites. Sep Sci Technol 34:17–28CrossRefGoogle Scholar
  11. 11.
    Mimura H, Kageyama N, Akiba K (1998) Ion-exchange properties of potassium nickel hexacyanoferrate(II) compounds. Solvent Extr Ion Exch 16:1013–1031CrossRefGoogle Scholar
  12. 12.
    Kubica B, Godunowa H, Tuteja-Krysa M, Stobinski M, Misiak R (2004) Sorption of lead(II) on transition metal hexacyanoferrates(II) and on nickel(II)-potassium hexacyanoferrate(II) resin composite in hydrochloric acid medium. J Radioanal Nucl Chem 262:721–724CrossRefGoogle Scholar
  13. 13.
    Du ZH, Jia MC, Wang WX (2013) Cesium removal from solution using PAN-based potassium nickel hexacyanoferrate(II) composite spheres. J Radioanal Nucl Chem 298:167–177CrossRefGoogle Scholar
  14. 14.
    Vrtoch L, Pipiska M, Hornik M, Augustin J, Lesny J (2011) Sorption of cesium from water solutions on potassium nickel hexacyanoferrate-modified Agaricus bisporus mushroom biomass. J Radioanal Nucl Chem 287:853–862CrossRefGoogle Scholar
  15. 15.
    Jukka L, Rsto H (1997) Ion exchange of cesium on potassium nickel hexacyanoferrate(II)s. J Nucl Sci Technol 34:484–489CrossRefGoogle Scholar
  16. 16.
    Qing YH, Kang B, Dai YD, LI J, Sheng WT (2014) Sorption mechanism analysis of cesium ions in nickel hexacyanoferrate. Energy Sci Technol 48:1901–1906Google Scholar
  17. 17.
    Ismail IM, El-Sourougy MR, Abdel Moneim N, Aly HF (1999) Equilibrium and kinetic studies of the sorption of cesium by potassium nickel hexacyanoferrate complex. J Radioanal Nucl Chem 240:59–67CrossRefGoogle Scholar
  18. 18.
    Awuala MR, Suzukia S, Taguchib T, Shiwakua H, Okamotoa Y, Yaitaa T (2014) Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents. Chem Eng J 242:127–135CrossRefGoogle Scholar
  19. 19.
    Vasanth Kumar K, Sivanesan S (2005) Prediction of optimum sorption isotherm: comparison of linear and non-linear method. J Hazard Mater 126:198–201CrossRefGoogle Scholar
  20. 20.
    Hasany SM, Khurshid SJ (1999) Sorption behavior of Sn(II) onto Haro river sand from aqueous acidic solutions. J Radioanal Nucl Chem 240:25–29CrossRefGoogle Scholar
  21. 21.
    Kumar PS, Ramalingam S, Abhinava RV, Kirupha SD, Murugesan A, Sivanesan S (2012) Adsorption of metal ions onto the chemically modified agricultural waste. Clean Soil Air Water 40:188–197CrossRefGoogle Scholar
  22. 22.
    Sato T, Tamura K, Okuwaki A (1992) Corrosion behaviour of silicon carbide ceramics in caustic alkaline solutions at high temperature. Br Ceram Trans 91:181–185Google Scholar
  23. 23.
    Lewandowski Z, Roe F (1994) Diffusivity of Cu2+ in calcium alginate gel beads: recalculation. Biotechnol Bioeng 43:186–187CrossRefGoogle Scholar
  24. 24.
    Vesselin D, Takayuki K (2012) Correlation among electronegativity, cation polarizability, optical basicity and single bond strength of simple oxides. J Solid State Chem 196:574–578CrossRefGoogle Scholar
  25. 25.
    Volkov AG, Paula S, Deamer DW (1997) Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochem Bioenerg 42:153–160CrossRefGoogle Scholar
  26. 26.
    Chen NY, Lu WC, Yang J, Li GZ (2004) Support vector machine in chemistry. World Scientific Pub Co Inc, SingaporeCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • YunHua Qing
    • 1
  • Jun Li
    • 1
  • Bin Kang
    • 1
  • ShuQuan Chang
    • 1
  • YaoDong Dai
    • 1
  • Qing Long
    • 1
  • Chao Yuan
    • 1
  1. 1.Department of Nuclear Science and Technology, College of Material Science and EngineeringNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China

Personalised recommendations