Skip to main content
Log in

Extracted species of Np(IV) complex with diglycolamide functionalized task specific ionic liquid: diffusion, kinetics and thermodynamics by cyclic voltammetry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This paper reports a first-ever cyclic voltammetric study and the electrochemical characterization of Np(IV) complexes with task-specific ionic liquid with appended diglycolamide (DGA-TSIL) ligand dissolved in the room-temperature ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C4mimNTf2). The results are compared with molecular entity, N,N,N′,N′-tetraoctyl diglycolamide (TODGA) dissolved in the same diluent. The diffusion coefficient (D) values were determined using the Randles–Ševcik equation. The standard rate constant (k s) values were also computed for the Np(IV)/Np(III) electrode redox reaction. The activation energy for diffusion (E a) and thermodynamic parameters for the redox reactions of the Np complexes were determined and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ν:

Scan rate, potential sweep rate

\( E_{\text{p}}^{\text{c}}, E_{{P{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}}^{c} \) :

Cathodic peak potential, half-wave cathodic peak potential respectively

\( E_{\text{p}}^{\text{a}} \) :

Anodic peak potential

GC:

Glassy carbon

D 0 or D :

Diffusion coefficient

\( (i_{\text{p}}^{\text{c}} )_\text{diff} \) :

Diffusion controlled cathodic peak current

n :

Number of electrons involved in the electrode reaction

F :

Faraday constant

A :

Area of electrode

C 0 :

Concentration of the analyte in the solution/bulk

α :

Charge transfer coefficient

n α :

Number of electrons in the rate-determining step

T :

Absolute temperature in Kelvin

R :

Ideal gas constant

A o :

Pre-exponential factor

E a :

Energy of activation for diffusion

D ox, D red :

Diffusion coefficients of oxidized and reduced species respectively

γ ox, γ red :

Activity coefficients of oxidized and reduced species respectively

G°, ∆H° ∆S°:

Changes in standard Gibbs free energy, enthalpy and entropy respectively

\( E_{{{{{\text{ox}}} \mathord{\left/ {\vphantom {{{\text{ox}}} {{\text{red}}}}} \right. \kern-\nulldelimiterspace} {{\text{red}}}}}}^{{\text{o}}} \) :

Standara potential

References

  1. http://www.world-nuclear.org/info/Current-and-Future-Generation/

  2. Murali MS, Bhattacharayya A, Raut DR, Kar AS, Tomar BS, Manchanda VK (2012) J Radioanal Nucl Chem 294:149–153

    Article  CAS  Google Scholar 

  3. Huddleston JG, Willauer HD, Swatloski RP, Visser AN, Rogers RD (1998) Chem Commun 44:1765–1766

    Article  Google Scholar 

  4. Blanchard LA, Hancut D, Beckman EJ, Brennecke JF (1999) Nature 399:28–29

    Article  Google Scholar 

  5. Fadeev AG, Meagher MM (2001) Chem Commun 44:295–296

    Article  Google Scholar 

  6. Cocalia VA, Jensen MP, Holbrey JD, Spear SK, Stepinski DC, Rogers RD (2005) Dalton Trans 15:1966–1971

    Article  Google Scholar 

  7. Visser AE, Rogers RD (2003) J Solid State Chem 171:109–113

    Article  CAS  Google Scholar 

  8. Venkatesan KA, Srinivasan TG, Rao PRV (2009) J Nucl Radiochem Sci 10:R1–R6

    Article  CAS  Google Scholar 

  9. Sun X, Luo H, Dai S (2012) Chem Rev 112:2100–2128

    Article  CAS  Google Scholar 

  10. Kolarik Z (2013) Solvent Extr Ion Exch 31:24–60

    Article  CAS  Google Scholar 

  11. Vasudeva Rao PR, Venkatesan KA, Rout A, Srinivasan TG, Nagarajan K (2012) Sep Sci Technol 47:204–222

    Article  CAS  Google Scholar 

  12. Li N, Fang G, Liu B, Zhang J, Zhao L, Wang S (2010) Anal Sci 26:455–459

    Article  Google Scholar 

  13. Loe-Mie F, Marchand G, Berthier J, Sarrut N, Pucheault M, Blanchard-Desce M, Vinet F, Vaultier M (2010) Angew Chem 122:434–437

    Article  Google Scholar 

  14. Visser AE, Swatloski RP, Reichert WM, Mayton R, Sheff S, Wierzbicki A, Davis JH, Rogers RD Jr (2001) Chem Commun 580:135–136

    Article  Google Scholar 

  15. Harjani JR, Friscic T, MacGillivray LR, Singer RD (2008) Dalton Trans 34:4595–4601

    Article  Google Scholar 

  16. Ouadi A, Klimchuk O, Gaillard C, Billard I (2007) Green Chem 9:1160–1162

    Article  CAS  Google Scholar 

  17. Ouadi A, Gadenne B, Hesemann P, Moreau JJE, Billard I, Gaillard C, Mekki S, Moutiers G (2006) Chem Eur J 12:3074–3081

    Article  CAS  Google Scholar 

  18. Odinets IL, Sharova EV, Artyshin OI, Lyssenko KA, Nelyubina YV, Myasoedova GV, Molochnikova NP, Zakharchenro EA (2010) Dalton Trans 39:4170–4178

    Article  CAS  Google Scholar 

  19. Sengupta A, Mohapatra PK, Iqbal M, Huskens J, Verboom W (2013) Sep Purif Technol 118:264–270

    Article  CAS  Google Scholar 

  20. Sengupta A, Mohapatra PK, Iqbal M, Verboom W, Huskens J (2012) Dalton Trans 41:6970–6979

    Article  CAS  Google Scholar 

  21. Barrosse-Antle LE, Bond AM, Compton RG, O’Mahony AM, Rogers EI, Silvester DS (2010) Chem Asian J 5:202–230

    Article  CAS  Google Scholar 

  22. Schoebrechts JP, Gilbert B (1985) Inorg Chem 24:2105–2110

    Article  CAS  Google Scholar 

  23. Kim SY, Asakura T, Morita Y, Uchiyama G, Ikeda Y (2004) J Radioanal Nucl Chem 262:311–315

    Article  CAS  Google Scholar 

  24. Yamamura T, Watanabe N, Yano T, Shiokawa Y (2005) J Electrochem Soc 152:A830–A836

    Article  CAS  Google Scholar 

  25. Kim SY, Asakura T, Morita Y (2005) Radiochim Acta 93:767–770

    CAS  Google Scholar 

  26. Kitatsuji Y, Kimura T, Kihara S (2010) J Electroanal Chem 641:83–89

    Article  CAS  Google Scholar 

  27. Sengupta A, Murali MS, Mohapatra PK (2013) J Radioanal Nucl Chem 298:405–412

    Article  CAS  Google Scholar 

  28. Sengupta A, Murali MS, Mohapatra PK (2013) J Radioanal Nucl Chem 298:209–217

    Article  CAS  Google Scholar 

  29. Sengupta A, Murali MS, Mohapatra PK (2014) J Rare Earths 32:641–647

    Article  CAS  Google Scholar 

  30. Mohapatra PK, Sengupta A, Iqbal M, Huskens J, Verboom W (2013) Chem Eur J 19:3230–3238

    Article  CAS  Google Scholar 

  31. Ansari SA, Mohapatra PK (2013) Radiochim Acta 101:163–168

    Article  CAS  Google Scholar 

  32. Kim KW, Lee EH, Choi IK, Yoo JH, Park HS (2000) J Radioanal Nucl Chem 245:301–308

    Article  CAS  Google Scholar 

  33. Rao CJ, Venkatesan KA, Nagarajan K, Srinivasan TG, Vasudeva Rao PR (2009) Electrochim Acta 54:4718–4725

    Article  CAS  Google Scholar 

  34. Bard AJ, Faulkner IR (1980) Electrochemical methods fundamentals and applications. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Dr. A. Goswami, Head, Radiochemistry Division, BARC, for his constant support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Murali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengupta, A., Murali, M.S., Mohapatra, P.K. et al. Extracted species of Np(IV) complex with diglycolamide functionalized task specific ionic liquid: diffusion, kinetics and thermodynamics by cyclic voltammetry. J Radioanal Nucl Chem 304, 563–570 (2015). https://doi.org/10.1007/s10967-014-3857-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3857-8

Keywords

Navigation