Copper ferrocyanide loaded track etched membrane: an effective cesium adsorbent

  • Sanhita Chaudhury
  • A. K. Pandey
  • A. Goswami


For the first time, the use of a membrane based copper ferrocyanide loaded sorbent for removal of Cs+ from neutral aqueous solution is reported in this work. The results indicated high Cs+ exchange capacity (1.75 mmol/g), large distribution coefficient, as well as fast absorption of the cation in the membrane. The membrane, inspite of presence of other metal ion, exclusively absorbed 137Cs from a simulated nuclear waste solution, though the absorption rate is affected due to their presence. This composite membrane showed promising properties for Cs+ removal from nuclear waste solution.


Cs Ferrocyanide Track etched membrane Adsorbent Nuclear waste 


  1. 1.
    IAEA (1993) IAEA Technical Data Series No. 356. International Atomic Energy Agency, ViennaGoogle Scholar
  2. 2.
    Schulz WW, Bray LA (1985) Solvent extraction recovery of byproduct 137Cs and 90Sr from HNO3 solution—a technology review and assessment. Sep Sci Technol 22:191–214CrossRefGoogle Scholar
  3. 3.
    Rais J, Plesek J, Selucky P, Kyrs M, Kadlecova L (1991) Extraction of cesium with derivatives of carborane into nitrobenzene. J Radioanal Nucl Chem 148:349–357CrossRefGoogle Scholar
  4. 4.
    Clarke TD, Wai CM (1998) Selective removal of cesium from acid solutions with immobilized copper ferrocyanide. Anal Chem 70:3708–3711CrossRefGoogle Scholar
  5. 5.
    Haas PA (1993) A review of information on ferrocyanide solids for removal of cesium from solutions. Sep Sci Technol 28:2479–2506CrossRefGoogle Scholar
  6. 6.
    Ismail IM, El-Sourougy MR, Abdel Moneim N, Aly HF (1999) Equilibrium and kinetic studies of the sorption of cesium by potassium nickel hexacyanoferrate complex. J Radioanal Nucl Chem 240:59–67CrossRefGoogle Scholar
  7. 7.
    Valentini MTG, Meloni S, Maxia V (1972) Adsorption of monovalent ions on zinc ferrocyanides. J Inorg Nucl Chem 34:1427–1436CrossRefGoogle Scholar
  8. 8.
    Pekarek V, Vesely V (1972) Synthetic inorganic ion exchangers-II: salts of heteropolyacids, insoluble ferrocyanides, synthetic aluminosilicates and miscellaneous exchangers. Talanta 19:1245–1283CrossRefGoogle Scholar
  9. 9.
    Gaur S (1996) Determination of Cs-137 in environmental water by ion-exchange chromatography. J Chromatogr A 733:57–71CrossRefGoogle Scholar
  10. 10.
    Rao SVS, Lal KB, Narasimhan SV, Ahmed J (1999) Copper ferrocyanide–polyurethane foam as a composite ion exchanger for removal of radioactive cesium. J Radioanal Nuc Chem 240:269–276CrossRefGoogle Scholar
  11. 11.
    Rao SVS, Lekshmi R, Mani AGS, Sinha PK (2010) Treatment of low level radioactive liquid wastes using composite ion-exchange resins based on polyurethane foam. J Radioanal Nucl Chem 283:379–384CrossRefGoogle Scholar
  12. 12.
    Hamilton T, Martinelli R, Kehl S, Brunk J (2005) Preconcentration of cesium-137 (137Cs) from large volume water samples using zirconium ferrocyanide embedded on cartridge water filters, Lawrence Livermore National Laboratory, UCRL-ABS-217452Google Scholar
  13. 13.
    Ishihara R, Fujiwara K, Harayama T, Okamura Y, Uchiyama S, Sugiyama M, Someya T, Amakai W, Umino S, Ono T, Nide A, Hirayama Y, Baba T, Kojima T, Umeno D, Saito K, Asai S, Suso T (2011) Removal of cesium using cobalt-ferrocyanide-impregnated polymer-chain-grafted fibers. J Nucl Sci Technol 48:1281–1284CrossRefGoogle Scholar
  14. 14.
    Sheha RR (2012) Synthesis and characterization of magnetic hexacyanoferrate(II) polymeric nanocomposite for separation of cesium from radioactive waste solutions. J Colloid Interface Sci 388:21–30CrossRefGoogle Scholar
  15. 15.
    Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, Timchalk C, Yantasee W (2010) Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater 182:225–231CrossRefGoogle Scholar
  16. 16.
    Avramenko V, Bratskaya S, Zheleznov V, Sheveleva I, Voitenko O, Sergienko V (2011) Colloid stable sorbents for cesium removal: preparation and application of latex particles functionalized with transition metals ferrocyanides. J Hazard Mater 186:1343–1350CrossRefGoogle Scholar
  17. 17.
    Vincent C, Hertz A, Vincent T, Barre Y, Guibal E (2014) Immobilization of inorganic ion-exchanger into biopolymer foams—application to cesium sorption. Chem Eng J 236:202–211CrossRefGoogle Scholar
  18. 18.
    Semenischev VS, Voronina AV, Bykov AA (2013) The study of sorption of caesium radionuclides by ‘‘T-55’’ ferrocyanide sorbent from various types of liquid radioactive wastes. J Radioanal Nucl Chem 295:1753–1757CrossRefGoogle Scholar
  19. 19.
    Egorin AM, Avramenko VA (2012) Dynamics of sorption of cesium radionuclides on selective ferrocyanide sorbents. Distribution of the 137Cs activity in the stationary phase. Radiochemistry 54:483–488CrossRefGoogle Scholar
  20. 20.
    Voronina AV, Semenishchev VS (2013) Influence of the concentrations of potassium, sodium, and ammonium ions on the cesium sorption with mixed nickel potassium ferrocyanide sorbent based on hydrated titanium dioxide. Radiochemistry 55:399–403CrossRefGoogle Scholar
  21. 21.
    Chen R, Tanaka H, Kawamoto T, Asai M, Fukushima C, Kurihara M, Ishizaki M, Watanabe M, Arisaka M, Nankawa T (2013) Thermodynamics and mechanism studies on electrochemical removal of cesium ions from aqueous solution using a nanoparticle film of copper hexacyanoferrate. ACS Appl Mater Interfaces 5:1284–1299Google Scholar
  22. 22.
    Das S, Pandey AK, Vasudevan T, Athawale AA, Manchanda VK (2009) Adsorptive preconcentration of uranium in hydrogels from seawater and aqueous solutions. Ind Eng Chem Res 48:6789–6796CrossRefGoogle Scholar
  23. 23.
    Saito K, Hori T, Furusaki S, Sugo T, Okamoto J (1987) Porous amidoxime-group-containing membrane for the recovery of uranium from seawater. Ind Eng Chem Res 26:1977–1981CrossRefGoogle Scholar
  24. 24.
    Das S, Pandey AK, Athawale AA, Natrajan V, Manchanda VK (2012) Uranium preconcentration from seawater using phosphate functionalized poly (propylene) fibrous membrane. Desalin Water Treat 38:114–120CrossRefGoogle Scholar
  25. 25.
    Chaudhury S, Agarwal C, Pandey AK, Goswami A, Sastry PU (2013) Electrically-driven facilitated transport of Cs+ across copper ferrocyanide channels in track etched membrane. J Membr Sci 434:93–98CrossRefGoogle Scholar
  26. 26.
    Kawamura S, Shibita S, Kurotaki K, Takeshita H (1978) The sorption characteristics of radionuclides on copper hexacyanoferrate(II), and the determination of 137Cs in sea water. Anal Chim Acta 102:225–228CrossRefGoogle Scholar
  27. 27.
    Goswami A, Acharya A, Pandey AK (2001) Study of self-diffusion of monovalent and divalent cations in Nafion-117 ion-exchange membrane. J Phys Chem B 105:9196–9201CrossRefGoogle Scholar
  28. 28.
    Lehto J, Harjula R (1987) Separation of cesium from nuclear waste solutions with hexacyanoferrate(II) and ammonium phosphomolybdate. Solv Extr Ion Exch 5:343–352CrossRefGoogle Scholar
  29. 29.
    Han F, Zhang GH, Gu P (2013) Adsorption kinetics and equilibrium modeling of cesium on copper ferrocyanide. J Radioanal Nucl Chem 295:369–377CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.Radiochemistry DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations