Advertisement

Preparation, quality control and biological characterization of 99mTc-vincristine

  • Saira Hina
  • Samina Roohi
  • Muhammad Ibrahim Rajoka
  • Asma Haque
  • Tanveer Hussain Bokhari
  • Muhammad Sohaib
Article

Abstract

In present study it is aimed to radiolabel vincristine with 99mTc and to evaluate bioaffinity of 99mTc labeled vinc. The optimum conditions required to obtain 99.6 ± 0.4 %, (n = 5) radiolabeling yield of 99mTc-vincristine (99mTc-vinc) were as follows: pH 4, 5 µg of vincristine sulphate, 6 µg SnCl2·2H2O as a reducing agent and 10 min incubation time at room temperature. Quality control of 99mTc-vinc was done by using paper electrophoresis and thin layer chromatography. The radiolabeling yield was confirmed by High performance liquid chromatography using radioactive and UV detector operating at 230 nm. 99mTc-vinc was stable in vitro for 5 h. Biodistribution and scintigraphy of 99mTc-vinc was performed in mice and rabbits respectively and that 99mTc-vinc showed high uptake of it in liver and spleen. Finally 99mTc-vinc may be the potential imaging agent for liver and spleen.

Keywords

99mTc-vincristine Quality control SPECT imaging Biodistribution Scintigraphy 

Notes

Acknowledgments

The authors are thankful to Mr. Ibrar Haider, Zafar, Riaz and Jamshed for their helpful discussions and providing facilities to work properly in lab.

References

  1. 1.
    Becker W (1995) The contribution of nuclear medicine to the patient with infection. Eur J Nucl Med 10:1195–1211CrossRefGoogle Scholar
  2. 2.
    Oliva MR, Saini S (2004) Liver cancer imaging: role of CT, MRI, US and PET. Cancer Imaging. doi: 10.1102/1470-7330.2004.0011
  3. 3.
    El-Ghany EA, Amine AM, El-Sayed AS, El-Kolaly MT, Abdel-Gelil F (2005) Radiochemical and biological characteristics of 99mTc-piroxicam for scintigraphy of inflammatory lesions. J Radioanal Nucl Chem 266(1):125–130CrossRefGoogle Scholar
  4. 4.
    Hina S, Rajoka MI, Roohi S, Haque A, Qasim M (2014) Preparation, biodistribution, and scintigraphic evaluation of 99mTc-clindamycin: an infection imaging agent. Appl Biochem Biotechnol 174:1420–1433CrossRefGoogle Scholar
  5. 5.
    Zahoor R, Roohi S, Ahmad M, Iqbal Z, Amir N, Tariq S, Savage PB (2013) Synthesis of 99mTc-cationic steroid antimicrobial-107 and in vitro evaluation. J Radioanal Nucl Chem 295:841–844CrossRefGoogle Scholar
  6. 6.
    Amir N, Roohi S, Pervez S, Mushtaq A, Jehangir M, Miyashita Y, Okamoto K (2009) S-bridged complex of 99mTc with fac (S)-[Rh(aet)3]. Quality control, characterization and biodistribution studies in rats. J Radioanal Nucl Chem 279(1):25–30CrossRefGoogle Scholar
  7. 7.
    Qaiser SS, Khan MR (2013) Synthesis and biological evaluation of the 99mTc-gemifloxacin dithiocarbamate complex: a novel Streptococcus pneumoniae infection imaging agent. J Mol Imaging Dyn 2(2):1–4Google Scholar
  8. 8.
    Faheem AR, Bokhari TH, Roohi S, Mushtaq A, Sohaib M (2013) 99mTc-Daunorubicin a potential brain imaging and theranostic agent: synthesis, quality control, characterization, biodistribution and scintigraphy. Nucl Med Biol 40:148–152CrossRefGoogle Scholar
  9. 9.
    Faheem AR, Bokhari TH, Roohi S, Chem M (2012) A direct labeling of doxorubicin with technetium-99m: its optimization, characterization and quality control. J Radioanal Nucl 293:303–307CrossRefGoogle Scholar
  10. 10.
    Altiparmak B, Lambrecht FY, Bayrak E, Durkan K (2010) Design and synthesis of 99m Tc-citro-folate for use as a tumor-targeted radiopharmaceutical. J Pharm 400:8–14Google Scholar
  11. 11.
    Sakr TM, Essa BM, El-Essawy FA, El-Mohty AA (2014) Synthesis and biodistribution of 99m Tc-PyDA as a potential marker for tumor hypoxia imaging. Radiochemistry 56:76–80CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Stevenson GD, Barber C, Furenlid LR, Barrett HH, Woolfenden JM, Zhao M, Liu Z (2013) Imaging of rat cerebral ischemia-reperfusion injury using 99mTc-labeled duramycin. Nucl Med Biol 40:80–88CrossRefGoogle Scholar
  13. 13.
    Xu YP, Luo SN, Pan DH, Wang LZ, Zhou YR, Yang M (2013) Synthesis and preliminary evaluation of 99mTc-spermine as a tumor imaging agent. J Radioanal Nucl Chem 295:1861–1866Google Scholar
  14. 14.
    Amin AM, Sanad MH, Abd-Elhaliem SM (2013) Radiochemical and biological characterization of 99m Tc-piracetam for brain imaging. Radiochemistry 55(6):624–628CrossRefGoogle Scholar
  15. 15.
    Gelfand M, Parisi M, Treves S (2011) Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines. J Nucl Med 52:318–322CrossRefGoogle Scholar
  16. 16.
    Norenberg JP, Hladik WB, Henkin RE (2006) Nuclear medicine, 2nd edn. Mosby Elsevier, Philadelphia, pp 938–948Google Scholar
  17. 17.
    Bartholoma MD, Louie AS, Valliant ZF, Zubieta J (2010) Technetium and gallium derived radiopharmaceuticals: comparing and contrasting the chemistry of two important radiometals for the molecular imaging era. Chem Rev 110:2903–2920CrossRefGoogle Scholar
  18. 18.
    Sanad MH, El-Tawoosy M (2013) Labeling of ursodeoxycholic acid with technetium-99m for hepatobiliary imaging. J Radioanal Nucl Chem 298:1105–1109CrossRefGoogle Scholar
  19. 19.
    Blaha V, Cihak I, Nicek F (1993) Clearance and distribution parameters of 99mTc-EHIDA, -DTPA and -MAG-3 by dynamic liver/kidney scintigraphy. Nucl Med Biol 20:89–93CrossRefGoogle Scholar
  20. 20.
    Kula M, Karacavus S, Baskol M, Deniz K, Abdulrezzak U, Tutus A (2010) Hepatobiliary function assessed by 99mTc-mebrofenin cholescintigraphy in the evaluation of fibrosis in chronic hepatitis: histopathological correlation. Nucl Med Commun 31:280–285CrossRefGoogle Scholar
  21. 21.
    Malhi H, Bhargava KK, Afriyie MO, Volenberg I, Schilsky LM, Palestro CJ, Gupta S (2002) 99mTc-mebrofenin scintigraphy for evaluating liver disease in a rat model of Wilson’s disease. J Nucl Med 43(2):246–252Google Scholar
  22. 22.
    Shen S, Jacob R, Bender LW, Duan J, Spencer SA (2014) A technique using 99mTc-mebrofenin SPECT for radiotherapy treatment planning for liver cancers or metastases. Med Dosim 39:7–11CrossRefGoogle Scholar
  23. 23.
    Shah I, Bhatnagar S, Rangarajan V, Patankar N (2012) Utility of Tc-99m-mebrofenin hepato-biliary scintigraphy (HIDA scan) for the diagnosis of biliary atresia. Trop Gastroenterol 33:62–64CrossRefGoogle Scholar
  24. 24.
    Lan JA, Chervu LR, Johansen KL, Wolkoff AW (1988) Uptake of technetium 99m hepatobiliary imaging agents by cultured rat hepatocytes. Gastroenterology 95:1625–1631Google Scholar
  25. 25.
    Ayoub SM, Abu Taleb AM, Ebeid NH (2014) Radiolabeling of alpha-fetoprotein monoclonal antibody for detection of liver tumor. Radiochemistry 56:81–85CrossRefGoogle Scholar
  26. 26.
    Xiangting C, Qiaoyu L, Wenyu S, Feng Z, Xuehao W, Hai W (2012) Bromocriptine enhances the uptake of 99mTc-MIBI in patients with hepatocellular carcinoma. J Biomed Res 26:165–169Google Scholar
  27. 27.
    de Barros ALB, das Grac¸as Mota L, de Aguiar Ferreira C, Correˆa NCR, de Go´es AM, Oliveira MC, Cardoso VN (2013) 99m Tc-labeled bombesin analog for breast cancer identification. J Radioanal Nucl Chem 295:2083–2090CrossRefGoogle Scholar
  28. 28.
    Oates E, Austin JM, Becker JL (1995) Technetium-99m-sulfur colloid SPECT imaging in infants with suspected heterotaxy syndrome. J Nucl Med 36:1368–1371Google Scholar
  29. 29.
    Pohlson EC, Wilkinson RW, Witzum KF (1994) Heat damaged red cell scan for intraoperative localization of the accessory spleen. J Pediatr Surg 29:604–608CrossRefGoogle Scholar
  30. 30.
    Johnson IS, Armstrong JG, Gorman M, Burnett JP (1963) The vinca alkaloids: a new class of oncolytic agents. Cancer Res 23:1390–1427Google Scholar
  31. 31.
    Qweider M, Gilsbach JM, Rohde V (2007) Inadvertent intrathecal vincristine administration: a neurosurgical emergency: case report. J Neurosurg 6:280–283Google Scholar
  32. 32.
    Graf WD, Chance PF, Lensch MW, Eng LJ, Lipe HP, Bird TD (1996) Severe vincristine neuropathy in charcot-marie-tooth disease type 1A. Cancer 7:1356–1362CrossRefGoogle Scholar
  33. 33.
    Chen X, Li L, Liu F, Liu B (2006) Synthesis and biological evaluation of technetium-99m-labeled deoxyglucose derivatives as imaging agents for tumor. Bioorg Med Chem Lett 16:5503–5506CrossRefGoogle Scholar
  34. 34.
    Saha GB (2003) Fundamentals of nuclear pharmacy, 5th edn. Springer, New YorkGoogle Scholar
  35. 35.
    Colledge D, Civitico G (2000) In vitro antihepadnaviral activities of combinations of penciclovir, lamivudine, and adefovir. Antimicrob Agents Chemother 44(3):551–560CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Saira Hina
    • 1
  • Samina Roohi
    • 2
  • Muhammad Ibrahim Rajoka
    • 1
  • Asma Haque
    • 1
  • Tanveer Hussain Bokhari
    • 3
  • Muhammad Sohaib
    • 4
  1. 1.Department of Bioinformatics and BiotechnologyGovernment College University FaisalabadFaisalabadPakistan
  2. 2.Isotope Production DivisionPakistan Institute of Nuclear Science and TechnologyIslamabadPakistan
  3. 3.Department of ChemistryGovernment College University FaisalabadFaisalabadPakistan
  4. 4.Pakistan Institute of Engineering and Applied SciencesIslamabadPakistan

Personalised recommendations