Journal of Radioanalytical and Nuclear Chemistry

, Volume 303, Issue 3, pp 2081–2092 | Cite as

On the radiological assessment of natural and fallout radioactivity in a natural high background radiation area at Odisha, India

  • S. Mohapatra
  • S. K. Sahoo
  • J. S. Dubey
  • A. C. Patra
  • V. K. Thakur
  • S. K. Tripathy
  • D. Vidyasagar
  • S. V. Godbole
  • P. M. Ravi
  • R. M. Tripathi


Natural and fallout radioactivity were estimated in surface soil samples collected around a natural high background radiation area (NHBRA) at Odisha, India using high resolution gamma ray spectrometry. Radiological characterization of the surface soil samples was done by the estimation of radiation hazard indices e.g. external absorbed gamma dose rate (D), radium equivalent activity (Ra eq) and activity concentration index (I). The estimated total absorbed gamma dose rate ranged between 46.2 and 964.2 nGy/h with an average of 341.4 nGy/h, higher than the global average of 58 nGy/h but compared with the other reported NHBRA in India and worldwide.


Natural radioactivity Fallout radioactivity Gamma ray spectrometry NHBRA Soil sample 



Authors gratefully acknowledge the guidance and encouragement of Dr. D. N. Sharma, Director, Health Safety and Environment Group, Bhabha Atomic Research Center (BARC) throughout this work. The help and support received from the colleagues of Health Physics Units, OSCOM, and the authorities of IREL during environmental sampling and survey of the study area is greatly acknowledged by the authors. The whole heartedly contribution of Dr. Manoj Mohapatra, Radiochemistry Division, BARC is greatly acknowledged during sampling and survey of the study area. The contribution of Shri S. Chinnaesakki and Smt. S. J. Sartandel, Health Physics Division, BARC is greatly acknowledged during the gamma spectrometric measurement of the samples. Authors are truly grateful for the cooperation received from other colleagues of the lab, during the progress of this work.


  1. 1.
    United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 2008. Sources and effects of ionizing Radiation. Report to the General Assembly with Annexes, United Nations, New YorkGoogle Scholar
  2. 2.
    Lee MH, Lee CW (1999) Determination of 137Cs, 90Sr and fallout Pu in the volcanic soil of Korea. J Radioanal Nucl Chem 239:471–476CrossRefGoogle Scholar
  3. 3.
    UNSCEAR (1988) United Nations scientific committee on the effects of atomic radiation sources and effects of ionizing radiation. United Nations, New YorkGoogle Scholar
  4. 4.
    Ritchie JC, McHenry JR (1990) Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. J Environ Qual 19:215–233CrossRefGoogle Scholar
  5. 5.
    Mishra UC (1993) Exposure due to the high natural radiation background and radioactive springs around the world. In: Proceedings of the international conference on high level natural radiation areas ramsar Iran 1990 IAEA Publication Series, IAEA, Vienna, p 29Google Scholar
  6. 6.
    Mohanty AK, Das SKK, Van V, Sengupta D, Saha SK (2003) Radiogenic heavy minerals in Chhatrapur beach placer deposit of Orissa southeastern coast of India. J Radioanal Nucl Chem 258(2):383–389CrossRefGoogle Scholar
  7. 7.
    Indian Bureau of Mines (IBM) (1997) Indian minerals year book. 2 India 394Google Scholar
  8. 8.
    International Atomic Energy Agency IAEA (1989) Measurement of radionuclides in food and environment. Technical Reports Series no. 295 IAEA, ViennaGoogle Scholar
  9. 9.
    Popek EM (2003) Sampling and analysis of environmental chemical pollutants. Academic Press Elsevier, BurlingtonGoogle Scholar
  10. 10.
    Fernando R, Roque R, Boggiani A, Ce´sar P, Jean-Marie F (2001) Uranium and thorium series disequilibrium in quaternary carbonate deposits from the Serra Bodoquena and Pantanal do Miranda, Mato Grosso du Sul State, and central Brazil. Appl Radiat Isot 54:153–173CrossRefGoogle Scholar
  11. 11.
    Mohapatra S, Sahoo SK, Kumar AV, Patra AC, Lenka P, Dubey JS, Thakur VK, Tripathi RM, Puranik VD (2013) Distribution of NORM and 137Cs in soils of Visakhapatnam region, Eastern India and associated Radiation Dose. Radiat Protec Dosim 157(1):95–104CrossRefGoogle Scholar
  12. 12.
    Tripathi RM, Sahoo SK, Mohapatra S, Lenka P, Dubey JS, Puranik VD (2012) Study of uranium isotopic composition in groundwater and deviation from secular equilibrium condition. DOI, J Radioanal Nucl Chem. doi: 10.1007/s10967-012-1992-7 Google Scholar
  13. 13.
    ICRP (1991) Recommendations of the International Commission of Radiological Protection. ICRP Publication 60. Ann ICRP 21:1–3CrossRefGoogle Scholar
  14. 14.
    Al-Masri MS, Amin Y, Hassan M, Ibrahim S, Kalili HS (2006) External gamma dose to Syrian population based on themeasurement of gamma-emitter in soils. J Radioanal Nucl Chem 267:337–343CrossRefGoogle Scholar
  15. 15.
    Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-product. Health Phys 48:87–95CrossRefGoogle Scholar
  16. 16.
    El-Arabi AM (2005) Natural radioactivity in sand used in thermal therapy at the Red Sea Coast. J Environ Radioact 81:11–19CrossRefGoogle Scholar
  17. 17.
    European Commission (2000) Radiological protection principles concerning the natural radioactivity of building materials. Radiat Prot No. 112Google Scholar
  18. 18.
    Chakrabarty A, Tripathi RM, Puranik VD (2009) Occurrences of norms and 137Cs in soils of the Singhbhum region of eastern India and associated radiation hazard. Radioprotection 44(1):55–68CrossRefGoogle Scholar
  19. 19.
    Reddy VK, Reddy ChG, Vidya Sagar K, Reddy DYP, Reddy RK (2012) Environmental radioactivity studies in the proposed Lambapur and Peddagattu uranium mining areas of Andhra Pradesh, India. Radiat Protect Dosim 151(2):290–298CrossRefGoogle Scholar
  20. 20.
    Sahoo SK, Mohapatra S, Sumesh CG, Sethy NK, Chakrabarty Patra A, Pillay RH, Khan AH, Tripathi RM, Puranik VD (2010) Natural radioactivity in road side soil along Mosabani-Jamshedpur road –a mineralized and mining region, Jharkhand and associated risk. Radiat Prot Dosim. doi: 10.1093/rpd/ncq111
  21. 21.
    Vijayan V, Behera SN (1999) Study of natural radioactivity in soils of Bhubaneswar. In: Proceedings of the eighth national symposium on environment, indira gandhi centre for atomic research, Kalpakkam, 22–25 June , pp 146–147Google Scholar
  22. 22.
    Mishra UC, Sadasivan S (1971) Natural radioactivity levels in Indian soils. J Sci Ind Res 30:59–62Google Scholar
  23. 23.
    Baeza A, Del-Rio M, Miro C (1992) Natural radioactivity in soils in the province of Caceres (Spain). Radiat Prot Dosim 45(1/4):261–263Google Scholar
  24. 24.
    Bellia S, Brai M, Hauser S, Puccio P, Rizzo AS (1997) Natural radioactivity in a volcanic island Ustica, Southern Italy. App Radiat Isot 48:287–293CrossRefGoogle Scholar
  25. 25.
    Martinez-Aguirre A (1997) Radioactivity impact of phosphate ore processing in a wet marshland in southwestern Spain. J Environ Radioact 34:45–57CrossRefGoogle Scholar
  26. 26.
    Karahan G, Bayulken A (2000) Assessment of gamma dose rates around Istanbul (Turkey). J Environ Radioact 47:213–221CrossRefGoogle Scholar
  27. 27.
    Yang Y, Wu X, Jiang Z, Wang W, Lu J, Lin J, Wang L, Hsia Y (2005) Radioactivity concentrations in soils of the Xiazhuang granite area, China. Appl Radiat Isot 63:255–259CrossRefGoogle Scholar
  28. 28.
    Jibiri NN (2001) Assessment of health risk levels associated with terrestrial gamma radiation dose rates in Nigeria. Environ Int 27:21–26CrossRefGoogle Scholar
  29. 29.
    Florou H, Trabidou G, Nicolaou G (2007) An assessment of the external radiological impact in areas of Greece with elevated natural radioactivity. J Environ Radioact 93:74–83CrossRefGoogle Scholar
  30. 30.
    Myrick TE, Berven BA, Haywood FF (1983) Determination of concentrations of selected radionuclides in surface soil in the U.S. Health Phys 45:631–642CrossRefGoogle Scholar
  31. 31.
    Megumi K, Oka T, Doi M, Kimura S, Tsujimoto T, Ishiyama T, Katsurayama K (1988) Relationships between the concentrations of natural radionuclides and the mineral composition of the surface soil. Radiat Prot Dosim 24(1–4):69–72Google Scholar
  32. 32.
    McAulay IR, Moran D (1988) Natural radioactivity in soil in the Republic of Ireland. Radiat Prot Dosim 24(1–4):47–49Google Scholar
  33. 33.
    Wong MC, Chan YK, Poon HT, Leung WM, Mok HY, So CK (1999) Environmental gamma absorbed dose rate in air in Hong Kong. Environmental Radiation Monitoring in Hong Kong Technical, Report No 17Google Scholar
  34. 34.
    Köster HW, Keen A, Pennders RMJ, Bannink DW, de Winkel JH (1988) Linear regression models for the natural radioactivity (238U, 232Th and 40K) in Dutch soils: a key to anomalies. Radiat Prot Dosim 24(1–4):63-68Google Scholar
  35. 35.
    Bradley EJ (1993) Contract Report. Natural radionuclides in environmental media NRPB-M439Google Scholar
  36. 36.
    Jagielak J, Biernacka M, Henschke J, Sosinska A (1992) Radiation Atlas of Poland. ISBN83-85787-01-1 WarsawGoogle Scholar
  37. 37.
    Malanca A, Gaidol L, Pessina V, Dallara G (1996) Distribution of 226Ra; 232Th, and 40K of Rio Grande do Norte (Brazil). J Environ Radioact 30(1):55–67CrossRefGoogle Scholar
  38. 38.
    Jacob O (1996) Exposure from natural radiation sources in Romania. J Prev Med 4(2):73–82Google Scholar
  39. 39.
    Zhongji Z and the Writing Group of the Nationwide Survey of Environmental Radioactivity Level in China (1992) Survey of environmental natural penetrating radiation level in China, 1983–1990 Radioprotection (Taiyuan) 2:120–122Google Scholar
  40. 40.
    Mohanty AK, Sengupta D, Das SK, Vijayan V, Saha SK (2004) Natural radioactivity in the newly discovered high background radiation area on the eastern coast of Orissa, India. Radiat Measur 38:153–165CrossRefGoogle Scholar
  41. 41.
    Gusain GS, Rautela BS, Sahoo SK, Ishikawa T, Prasad G, Omori Y, Sorimachi A, Tokonami S, Ramola RC (2012) Distribution of terrestrial gamma radiation dose rate in the eastern coastal area of Odisha, India. Radiat Prot Dosim 152(1–3):42–45Google Scholar
  42. 42.
    Mohanty AK, Sengupta D, Das SK, Saha SK, Van KV (2004) Natural radioactivity and radiation exposure in the high background area at Chhatrapur beach placer deposit of Orissa, India. J Environ Radioact 75:15–33CrossRefGoogle Scholar
  43. 43.
    Lalit BY, Shukla VK (1982) Natural radioactivity in foodstuffs from high natural radioactivity areas of southern India. In: Vohra KG, Mishra UC, Pillai KC, Sadasivan S (eds) Natural radiation environment III proceedings of the 2nd special symposium Bombay,Wiley, New Delhi, pp 43–49Google Scholar
  44. 44.
    Lakshmi KS (1990) A report on the background radiation survey at Kudankulam Project site and its environs. Part-II Spectral measurements and analysis of soil, terrestrial marine and diet samples report Meenakshi College for Women Madras IndiaGoogle Scholar
  45. 45.
    Kannan V, Rajan MP, Iyengar MAR (1992) Gamma spectrometric studies of beach sands and soils in the enhanced background site at Kalpakkam. In: National seminar on radiation environment and man department of physics, Mysore University, Mysore, pp 8–9Google Scholar
  46. 46.
    Kannan V, Rajan MP, Iyengar MAR, Ramesh R (2002) Distribution of natural and anthropogenic radionuclides in soil and beach sand samples of Kalpakkam (India) using hyper pure germanium (HPGe) gamma ray spectrometry. Appl Radiat Isot 57:109–119CrossRefGoogle Scholar
  47. 47.
    Radhakrishna AP, Somasekarapa HM, Narayana Y, Siddappa K (1993) A new natural background radiation area on the southwest coast of India. Health Phys 65:390–395CrossRefGoogle Scholar
  48. 48.
    Arogunjo AM, Hollriegl V, Giussani A, Leopold K, Gerstmann U, Veronese I, Oeh U (2009) Uranium and thorium in soils, mineral sands, water and food samples in a tin mining area in Nigeria with elevated activity. J Environ Radioact 100:232–240CrossRefGoogle Scholar
  49. 49.
    Termizi R, Wahab A, Hussein A, Khalik MA, Wood A (2005) Environmental 238U and 232Th concentration measurements in an area of high level natural background radiation at Palong, Johor, Malaysia. J Environ Radioact 80:287–304CrossRefGoogle Scholar
  50. 50.
    Shanthi G, Kumaran TT, Allen J, Gnana Raj G, Maniyan CG (2010) Measurement of activity concentration of natural radionuclides for the assessment of radiological indices. Radiat Prot Dosim 141(1):90–96CrossRefGoogle Scholar
  51. 51.
    Naivo R, Martin R, Franck T, Asivelo F, Solonjara Andriambololona R (2008) Top soil radioactivity assessment in a high natural radiation background area: the case of Vinaninkarena, Antsirabe—Madagascar. Appl Radiat Isot 66:1619–1622CrossRefGoogle Scholar
  52. 52.
    Shetty PK, Narayana Y (2010) Variation of radiation level and radionuclide enrichment in high background area. J Environ Radioact 101:1043–1047CrossRefGoogle Scholar
  53. 53.
    Jelena M, Popi B, Salbu T, Strand, Lindis S (2011) Assessment of radionuclide and metal contamination in a thorium rich area in Norway. J Environ Monit 13:1730CrossRefGoogle Scholar
  54. 54.
    Baranwal VC, Sharma SP, Sengupta D, Sandilya MK, Bhaumik BK, Gui R, Saha SK (2006) A new high background radiation area in the geothermal region of Eastern Ghats Mobile Belt (EGMB) of Orissa, India. Radiat Measures 41:602–610CrossRefGoogle Scholar
  55. 55.
    Dragović S, Onjia A (2006) Classification of soil samples according to geographic origin using gamma ray spectrometry and principal component analysis. J Environ Radioact 89:150–158CrossRefGoogle Scholar
  56. 56.
    Godoy JM, Schuch LA, Nordemann DJR, Reis VRG, Ramalho M, Recio JC, Brito, Olech MA (1998) 137Cs, 226Ra, 228Ra, 210Pb and 40K Concentrations in Antarctic Soil, Sediment and Selected Moss and Lichen Samples. J Environ Radioact 411:33–45.
  57. 57.
    Hamarneh IA, Reikat A, Toukan K (2003) Radioactivity concentrations of 40K, 134Cs, 137Cs, 90Sr, 241Am, 238Pu and 239+240Pu radionuclides in Jordanian soil samples. J Environ Radioact 67:53–67CrossRefGoogle Scholar
  58. 58.
    Aslani MAA, Aytas S, Akyil S, Yaprak G, Yener G, Eral M (2003) Activity concentration of caesium-137 in agricultural soils. J Environ Radioact 65:131–145CrossRefGoogle Scholar
  59. 59.
    Lavi N, Golobo G, Alfassi ZB (2006) Monitoring and surveillance of radio-cesium in cultivated soils and foodstuff samples in Israel 18 years after the Chernobyl disaster. Radiat Meas 46:78–83CrossRefGoogle Scholar
  60. 60.
    LaBrecque JJ, Rosales PA, Carias O (1992) The preliminary results of the measurements of environmental levels of 40K and 137Cs in Venezuela. Nucl Instr Meth A 312:217–222CrossRefGoogle Scholar
  61. 61.
    Poręba G, Bluszcz A, Snieszko Z (2003) Concentration and vertical distribution of 137Cs in agricultural and undisturbed soils from Checho and Czarnocin areas. Geochronometria 22:67–72Google Scholar
  62. 62.
    Zhiyanski M, Bech J, Sokolovska M, Lucot E, Bech J, Badot P (2008) Cs-137 distribution in forest floor and surface soil layers from two mountainous regions in Bulgaria. J Geochem Explor 96:256–266CrossRefGoogle Scholar
  63. 63.
    Zhao Y, Yan D, Zhang Q, Zhan J, Hu H (2012) Spatial distributions of (137) Cs in surface soil in Jing-Jin-Ji Region, North China. J Environ Radioact Nov 113:1-7Google Scholar
  64. 64.
    Bara SV, Arora V, Chinnaesakki S, Sartandel SJ, Bajwa BS, Tripathi RM, Puranik VD (2012) Radiological assessment of natural and fallout radioactivity in the soil of Chamba and Dharamshala areas of Himachal Pradesh, India. J Radioanal Nucl Ch 291:769–776CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • S. Mohapatra
    • 1
  • S. K. Sahoo
    • 1
  • J. S. Dubey
    • 1
  • A. C. Patra
    • 1
  • V. K. Thakur
    • 1
  • S. K. Tripathy
    • 1
  • D. Vidyasagar
    • 1
  • S. V. Godbole
    • 2
  • P. M. Ravi
    • 1
  • R. M. Tripathi
    • 1
  1. 1.Health Physics DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Radiochemistry DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations